/*	$NetBSD: getaddrinfo.c,v 1.82 2006/03/25 12:09:40 rpaulo Exp $	*/
/*	$KAME: getaddrinfo.c,v 1.29 2000/08/31 17:26:57 itojun Exp $	*/

/*
 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the project nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#define LOG_TAG "getaddrinfo"

#include "getaddrinfo.h"

#include <arpa/inet.h>
#include <arpa/nameser.h>
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <net/if.h>
#include <netdb.h>
#include <netinet/in.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/param.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/un.h>
#include <unistd.h>

#include <android-base/logging.h>

#include "netd_resolv/resolv.h"
#include "resolv_cache.h"
#include "resolv_private.h"

#define ANY 0

const char in_addrany[] = {0, 0, 0, 0};
const char in_loopback[] = {127, 0, 0, 1};
const char in6_addrany[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
const char in6_loopback[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1};

const struct afd {
    int a_af;
    int a_addrlen;
    int a_socklen;
    int a_off;
    const char* a_addrany;
    const char* a_loopback;
    int a_scoped;
} afdl[] = {
        {PF_INET6, sizeof(struct in6_addr), sizeof(struct sockaddr_in6),
         offsetof(struct sockaddr_in6, sin6_addr), in6_addrany, in6_loopback, 1},
        {PF_INET, sizeof(struct in_addr), sizeof(struct sockaddr_in),
         offsetof(struct sockaddr_in, sin_addr), in_addrany, in_loopback, 0},
        {0, 0, 0, 0, NULL, NULL, 0},
};

struct Explore {
    int e_af;
    int e_socktype;
    int e_protocol;
    int e_wild;
#define WILD_AF(ex) ((ex).e_wild & 0x01)
#define WILD_SOCKTYPE(ex) ((ex).e_wild & 0x02)
#define WILD_PROTOCOL(ex) ((ex).e_wild & 0x04)
};

const Explore explore_options[] = {
        {PF_INET6, SOCK_DGRAM, IPPROTO_UDP, 0x07},
        {PF_INET6, SOCK_STREAM, IPPROTO_TCP, 0x07},
        {PF_INET6, SOCK_RAW, ANY, 0x05},
        {PF_INET, SOCK_DGRAM, IPPROTO_UDP, 0x07},
        {PF_INET, SOCK_STREAM, IPPROTO_TCP, 0x07},
        {PF_INET, SOCK_RAW, ANY, 0x05},
        {PF_UNSPEC, SOCK_DGRAM, IPPROTO_UDP, 0x07},
        {PF_UNSPEC, SOCK_STREAM, IPPROTO_TCP, 0x07},
        {PF_UNSPEC, SOCK_RAW, ANY, 0x05},
};

#define PTON_MAX 16
#define MAXPACKET (8 * 1024)

typedef union {
    HEADER hdr;
    u_char buf[MAXPACKET];
} querybuf;

struct res_target {
    struct res_target* next;
    const char* name;  /* domain name */
    int qclass, qtype; /* class and type of query */
    u_char* answer;    /* buffer to put answer */
    int anslen;        /* size of answer buffer */
    int n;             /* result length */
};

static int str2number(const char*);
static int explore_fqdn(const struct addrinfo*, const char*, const char*, struct addrinfo**,
                        const struct android_net_context*);
static int explore_null(const struct addrinfo*, const char*, struct addrinfo**);
static int explore_numeric(const struct addrinfo*, const char*, const char*, struct addrinfo**,
                           const char*);
static int explore_numeric_scope(const struct addrinfo*, const char*, const char*,
                                 struct addrinfo**);
static int get_canonname(const struct addrinfo*, struct addrinfo*, const char*);
static struct addrinfo* get_ai(const struct addrinfo*, const struct afd*, const char*);
static int get_portmatch(const struct addrinfo*, const char*);
static int get_port(const struct addrinfo*, const char*, int);
static const struct afd* find_afd(int);
static int ip6_str2scopeid(const char*, struct sockaddr_in6*, u_int32_t*);

static struct addrinfo* getanswer(const querybuf*, int, const char*, int, const struct addrinfo*,
                                  int* herrno);
static int dns_getaddrinfo(const char* name, const addrinfo* pai,
                           const android_net_context* netcontext, addrinfo** rv);
static void _sethtent(FILE**);
static void _endhtent(FILE**);
static struct addrinfo* _gethtent(FILE**, const char*, const struct addrinfo*);
static bool files_getaddrinfo(const char* name, const addrinfo* pai, addrinfo** res);
static int _find_src_addr(const struct sockaddr*, struct sockaddr*, unsigned, uid_t);

static int res_queryN(const char* name, res_target* target, res_state res, int* herrno);
static int res_searchN(const char* name, res_target* target, res_state res, int* herrno);
static int res_querydomainN(const char* name, const char* domain, res_target* target, res_state res,
                            int* herrno);

const char* const ai_errlist[] = {
        "Success",
        "Address family for hostname not supported",    /* EAI_ADDRFAMILY */
        "Temporary failure in name resolution",         /* EAI_AGAIN      */
        "Invalid value for ai_flags",                   /* EAI_BADFLAGS   */
        "Non-recoverable failure in name resolution",   /* EAI_FAIL       */
        "ai_family not supported",                      /* EAI_FAMILY     */
        "Memory allocation failure",                    /* EAI_MEMORY     */
        "No address associated with hostname",          /* EAI_NODATA     */
        "hostname nor servname provided, or not known", /* EAI_NONAME     */
        "servname not supported for ai_socktype",       /* EAI_SERVICE    */
        "ai_socktype not supported",                    /* EAI_SOCKTYPE   */
        "System error returned in errno",               /* EAI_SYSTEM     */
        "Invalid value for hints",                      /* EAI_BADHINTS	  */
        "Resolved protocol is unknown",                 /* EAI_PROTOCOL   */
        "Argument buffer overflow",                     /* EAI_OVERFLOW   */
        "Unknown error",                                /* EAI_MAX        */
};

/* XXX macros that make external reference is BAD. */

#define GET_AI(ai, afd, addr)                                \
    do {                                                     \
        /* external reference: pai, error, and label free */ \
        (ai) = get_ai(pai, (afd), (addr));                   \
        if ((ai) == NULL) {                                  \
            error = EAI_MEMORY;                              \
            goto free;                                       \
        }                                                    \
    } while (0)

#define GET_PORT(ai, serv)                             \
    do {                                               \
        /* external reference: error and label free */ \
        error = get_port((ai), (serv), 0);             \
        if (error != 0) goto free;                     \
    } while (0)

#define MATCH_FAMILY(x, y, w) \
    ((x) == (y) || ((w) && ((x) == PF_UNSPEC || (y) == PF_UNSPEC)))
#define MATCH(x, y, w) ((x) == (y) || ((w) && ((x) == ANY || (y) == ANY)))

const char* gai_strerror(int ecode) {
    if (ecode < 0 || ecode > EAI_MAX) ecode = EAI_MAX;
    return ai_errlist[ecode];
}

void freeaddrinfo(struct addrinfo* ai) {
    while (ai) {
        struct addrinfo* next = ai->ai_next;
        if (ai->ai_canonname) free(ai->ai_canonname);
        // Also frees ai->ai_addr which points to extra space beyond addrinfo
        free(ai);
        ai = next;
    }
}

static int str2number(const char* p) {
    char* ep;
    unsigned long v;

    assert(p != NULL);

    if (*p == '\0') return -1;
    ep = NULL;
    errno = 0;
    v = strtoul(p, &ep, 10);
    if (errno == 0 && ep && *ep == '\0' && v <= UINT_MAX)
        return v;
    else
        return -1;
}

/*
 * The following functions determine whether IPv4 or IPv6 connectivity is
 * available in order to implement AI_ADDRCONFIG.
 *
 * Strictly speaking, AI_ADDRCONFIG should not look at whether connectivity is
 * available, but whether addresses of the specified family are "configured
 * on the local system". However, bionic doesn't currently support getifaddrs,
 * so checking for connectivity is the next best thing.
 */
static int have_ipv6(unsigned mark, uid_t uid) {
    static const struct sockaddr_in6 sin6_test = {
            .sin6_family = AF_INET6,
            .sin6_addr.s6_addr = {// 2000::
                                  0x20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};
    sockaddr_union addr = {.sin6 = sin6_test};
    return _find_src_addr(&addr.sa, NULL, mark, uid) == 1;
}

static int have_ipv4(unsigned mark, uid_t uid) {
    static const struct sockaddr_in sin_test = {
            .sin_family = AF_INET,
            .sin_addr.s_addr = __constant_htonl(0x08080808L)  // 8.8.8.8
    };
    sockaddr_union addr = {.sin = sin_test};
    return _find_src_addr(&addr.sa, NULL, mark, uid) == 1;
}

// Internal version of getaddrinfo(), but limited to AI_NUMERICHOST.
// NOTE: also called by resolv_set_nameservers_for_net().
int getaddrinfo_numeric(const char* hostname, const char* servname, addrinfo hints,
                        addrinfo** result) {
    hints.ai_flags = AI_NUMERICHOST;
    const android_net_context netcontext = {
            .app_netid = NETID_UNSET,
            .app_mark = MARK_UNSET,
            .dns_netid = NETID_UNSET,
            .dns_mark = MARK_UNSET,
            .uid = NET_CONTEXT_INVALID_UID,
    };
    return android_getaddrinfofornetcontext(hostname, servname, &hints, &netcontext, result);
}

int android_getaddrinfofornetcontext(const char* hostname, const char* servname,
                                     const struct addrinfo* hints,
                                     const struct android_net_context* netcontext,
                                     struct addrinfo** res) {
    struct addrinfo sentinel = {};
    struct addrinfo* cur = &sentinel;
    int error = 0;

    // hostname is allowed to be nullptr
    // servname is allowed to be nullptr
    // hints is allowed to be nullptr
    assert(res != nullptr);
    assert(netcontext != nullptr);

    struct addrinfo ai = {
            .ai_flags = 0,
            .ai_family = PF_UNSPEC,
            .ai_socktype = ANY,
            .ai_protocol = ANY,
            .ai_addrlen = 0,
            .ai_canonname = nullptr,
            .ai_addr = nullptr,
            .ai_next = nullptr,
    };

    do {
        if (hostname == NULL && servname == NULL) {
            error = EAI_NONAME;
            break;
        }
        if (hints) {
            /* error check for hints */
            if (hints->ai_addrlen || hints->ai_canonname || hints->ai_addr || hints->ai_next) {
                error = EAI_BADHINTS;
                break;
            }
            if (hints->ai_flags & ~AI_MASK) {
                error = EAI_BADFLAGS;
                break;
            }

            if (!(hints->ai_family == PF_UNSPEC || hints->ai_family == PF_INET ||
                  hints->ai_family == PF_INET6)) {
                error = EAI_FAMILY;
                break;
            }

            ai = *hints;

            /*
             * if both socktype/protocol are specified, check if they
             * are meaningful combination.
             */
            if (ai.ai_socktype != ANY && ai.ai_protocol != ANY) {
                for (const Explore& ex : explore_options) {
                    if (ai.ai_family != ex.e_af) continue;
                    if (ex.e_socktype == ANY) continue;
                    if (ex.e_protocol == ANY) continue;
                    if (ai.ai_socktype == ex.e_socktype && ai.ai_protocol != ex.e_protocol) {
                        error = EAI_BADHINTS;
                        break;
                    }
                }
                if (error) break;
            }
        }

        /*
         * Check for special cases:
         * (1) numeric servname is disallowed if socktype/protocol are left unspecified.
         * (2) servname is disallowed for raw and other inet{,6} sockets.
         */
        if (MATCH_FAMILY(ai.ai_family, PF_INET, 1) || MATCH_FAMILY(ai.ai_family, PF_INET6, 1)) {
            struct addrinfo tmp = ai;
            if (tmp.ai_family == PF_UNSPEC) {
                tmp.ai_family = PF_INET6;
            }
            error = get_portmatch(&tmp, servname);
            if (error) break;
        }

        // NULL hostname, or numeric hostname
        for (const Explore& ex : explore_options) {
            /* PF_UNSPEC entries are prepared for DNS queries only */
            if (ex.e_af == PF_UNSPEC) continue;

            if (!MATCH_FAMILY(ai.ai_family, ex.e_af, WILD_AF(ex))) continue;
            if (!MATCH(ai.ai_socktype, ex.e_socktype, WILD_SOCKTYPE(ex))) continue;
            if (!MATCH(ai.ai_protocol, ex.e_protocol, WILD_PROTOCOL(ex))) continue;

            struct addrinfo tmp = ai;
            if (tmp.ai_family == PF_UNSPEC) tmp.ai_family = ex.e_af;
            if (tmp.ai_socktype == ANY && ex.e_socktype != ANY) tmp.ai_socktype = ex.e_socktype;
            if (tmp.ai_protocol == ANY && ex.e_protocol != ANY) tmp.ai_protocol = ex.e_protocol;

            LOG(DEBUG) << __func__ << ": explore_numeric: ai_family=" << tmp.ai_family
                       << " ai_socktype=" << tmp.ai_socktype << " ai_protocol=" << tmp.ai_protocol;
            if (hostname == nullptr)
                error = explore_null(&tmp, servname, &cur->ai_next);
            else
                error = explore_numeric_scope(&tmp, hostname, servname, &cur->ai_next);

            if (error) break;

            while (cur->ai_next) cur = cur->ai_next;
        }
        if (error) break;

        /*
         * XXX
         * If numeric representation of AF1 can be interpreted as FQDN
         * representation of AF2, we need to think again about the code below.
         */
        if (sentinel.ai_next) break;

        if (hostname == nullptr) {
            error = EAI_NODATA;
            break;
        }
        if (ai.ai_flags & AI_NUMERICHOST) {
            error = EAI_NONAME;
            break;
        }

        /*
         * hostname as alphabetical name.
         * We would like to prefer AF_INET6 over AF_INET, so we'll make a outer loop by AFs.
         */
        for (const Explore& ex : explore_options) {
            // Require exact match for family field
            if (ai.ai_family != ex.e_af) continue;

            if (!MATCH(ai.ai_socktype, ex.e_socktype, WILD_SOCKTYPE(ex))) {
                continue;
            }
            if (!MATCH(ai.ai_protocol, ex.e_protocol, WILD_PROTOCOL(ex))) {
                continue;
            }

            struct addrinfo tmp = ai;
            if (tmp.ai_socktype == ANY && ex.e_socktype != ANY) tmp.ai_socktype = ex.e_socktype;
            if (tmp.ai_protocol == ANY && ex.e_protocol != ANY) tmp.ai_protocol = ex.e_protocol;

            LOG(DEBUG) << __func__ << ": explore_fqdn(): ai_family=" << tmp.ai_family
                       << " ai_socktype=" << tmp.ai_socktype << " ai_protocol=" << tmp.ai_protocol;
            error = explore_fqdn(&tmp, hostname, servname, &cur->ai_next, netcontext);

            while (cur->ai_next) cur = cur->ai_next;
        }

        if (sentinel.ai_next) {
            error = 0;
        } else if (error == 0) {
            error = EAI_FAIL;
        }
    } while (0);

    if (error) {
        freeaddrinfo(sentinel.ai_next);
        *res = nullptr;
    } else {
        *res = sentinel.ai_next;
    }
    return error;
}

// FQDN hostname, DNS lookup
static int explore_fqdn(const struct addrinfo* pai, const char* hostname, const char* servname,
                        struct addrinfo** res, const struct android_net_context* netcontext) {
    struct addrinfo* result;
    int error = 0;

    assert(pai != NULL);
    /* hostname may be NULL */
    /* servname may be NULL */
    assert(res != NULL);

    result = NULL;

    // If the servname does not match socktype/protocol, ignore it.
    if (get_portmatch(pai, servname) != 0) return 0;

    if (!files_getaddrinfo(hostname, pai, &result)) {
        error = dns_getaddrinfo(hostname, pai, netcontext, &result);
    }
    if (!error) {
        struct addrinfo* cur;
        for (cur = result; cur; cur = cur->ai_next) {
            GET_PORT(cur, servname);
            /* canonname should be filled already */
        }
        *res = result;
        return 0;
    }

free:
    freeaddrinfo(result);
    return error;
}

/*
 * hostname == NULL.
 * passive socket -> anyaddr (0.0.0.0 or ::)
 * non-passive socket -> localhost (127.0.0.1 or ::1)
 */
static int explore_null(const struct addrinfo* pai, const char* servname, struct addrinfo** res) {
    int s;
    const struct afd* afd;
    struct addrinfo* cur;
    struct addrinfo sentinel;
    int error;

    LOG(DEBUG) << __func__;

    assert(pai != NULL);
    /* servname may be NULL */
    assert(res != NULL);

    *res = NULL;
    sentinel.ai_next = NULL;
    cur = &sentinel;

    /*
     * filter out AFs that are not supported by the kernel
     * XXX errno?
     */
    s = socket(pai->ai_family, SOCK_DGRAM | SOCK_CLOEXEC, 0);
    if (s < 0) {
        if (errno != EMFILE) return 0;
    } else
        close(s);

    /*
     * if the servname does not match socktype/protocol, ignore it.
     */
    if (get_portmatch(pai, servname) != 0) return 0;

    afd = find_afd(pai->ai_family);
    if (afd == NULL) return 0;

    if (pai->ai_flags & AI_PASSIVE) {
        GET_AI(cur->ai_next, afd, afd->a_addrany);
        GET_PORT(cur->ai_next, servname);
    } else {
        GET_AI(cur->ai_next, afd, afd->a_loopback);
        GET_PORT(cur->ai_next, servname);
    }
    cur = cur->ai_next;

    *res = sentinel.ai_next;
    return 0;

free:
    freeaddrinfo(sentinel.ai_next);
    return error;
}

/*
 * numeric hostname
 */
static int explore_numeric(const struct addrinfo* pai, const char* hostname, const char* servname,
                           struct addrinfo** res, const char* canonname) {
    const struct afd* afd;
    struct addrinfo* cur;
    struct addrinfo sentinel;
    int error;
    char pton[PTON_MAX];

    assert(pai != NULL);
    /* hostname may be NULL */
    /* servname may be NULL */
    assert(res != NULL);

    *res = NULL;
    sentinel.ai_next = NULL;
    cur = &sentinel;

    /*
     * if the servname does not match socktype/protocol, ignore it.
     */
    if (get_portmatch(pai, servname) != 0) return 0;

    afd = find_afd(pai->ai_family);
    if (afd == NULL) return 0;

    if (inet_pton(afd->a_af, hostname, pton) == 1) {
        if (pai->ai_family == afd->a_af || pai->ai_family == PF_UNSPEC /*?*/) {
            GET_AI(cur->ai_next, afd, pton);
            GET_PORT(cur->ai_next, servname);
            if ((pai->ai_flags & AI_CANONNAME)) {
                /*
                 * Set the numeric address itself as
                 * the canonical name, based on a
                 * clarification in rfc2553bis-03.
                 */
                error = get_canonname(pai, cur->ai_next, canonname);
                if (error != 0) {
                    freeaddrinfo(sentinel.ai_next);
                    return error;
                }
            }
            while (cur->ai_next) cur = cur->ai_next;
        } else
            return EAI_FAMILY;
    }

    *res = sentinel.ai_next;
    return 0;

free:
    freeaddrinfo(sentinel.ai_next);
    return error;
}

/*
 * numeric hostname with scope
 */
static int explore_numeric_scope(const struct addrinfo* pai, const char* hostname,
                                 const char* servname, struct addrinfo** res) {
    const struct afd* afd;
    struct addrinfo* cur;
    int error;
    const char *cp, *scope, *addr;
    struct sockaddr_in6* sin6;

    LOG(DEBUG) << __func__;

    assert(pai != NULL);
    /* hostname may be NULL */
    /* servname may be NULL */
    assert(res != NULL);

    /*
     * if the servname does not match socktype/protocol, ignore it.
     */
    if (get_portmatch(pai, servname) != 0) return 0;

    afd = find_afd(pai->ai_family);
    if (afd == NULL) return 0;

    if (!afd->a_scoped) return explore_numeric(pai, hostname, servname, res, hostname);

    cp = strchr(hostname, SCOPE_DELIMITER);
    if (cp == NULL) return explore_numeric(pai, hostname, servname, res, hostname);

    /*
     * Handle special case of <scoped_address><delimiter><scope id>
     */
    char* hostname2 = strdup(hostname);
    if (hostname2 == NULL) return EAI_MEMORY;
    /* terminate at the delimiter */
    hostname2[cp - hostname] = '\0';
    addr = hostname2;
    scope = cp + 1;

    error = explore_numeric(pai, addr, servname, res, hostname);
    if (error == 0) {
        u_int32_t scopeid;

        for (cur = *res; cur; cur = cur->ai_next) {
            if (cur->ai_family != AF_INET6) continue;
            sin6 = (struct sockaddr_in6*) (void*) cur->ai_addr;
            if (ip6_str2scopeid(scope, sin6, &scopeid) == -1) {
                free(hostname2);
                return (EAI_NODATA); /* XXX: is return OK? */
            }
            sin6->sin6_scope_id = scopeid;
        }
    }

    free(hostname2);

    return error;
}

static int get_canonname(const struct addrinfo* pai, struct addrinfo* ai, const char* str) {
    assert(pai != NULL);
    assert(ai != NULL);
    assert(str != NULL);

    if ((pai->ai_flags & AI_CANONNAME) != 0) {
        ai->ai_canonname = strdup(str);
        if (ai->ai_canonname == NULL) return EAI_MEMORY;
    }
    return 0;
}

static struct addrinfo* get_ai(const struct addrinfo* pai, const struct afd* afd,
                               const char* addr) {
    char* p;
    struct addrinfo* ai;

    assert(pai != NULL);
    assert(afd != NULL);
    assert(addr != NULL);

    ai = (struct addrinfo*) malloc(sizeof(struct addrinfo) + sizeof(sockaddr_union));
    if (ai == NULL) return NULL;

    memcpy(ai, pai, sizeof(struct addrinfo));
    ai->ai_addr = (struct sockaddr*) (void*) (ai + 1);
    memset(ai->ai_addr, 0, sizeof(sockaddr_union));

    ai->ai_addrlen = afd->a_socklen;
    ai->ai_addr->sa_family = ai->ai_family = afd->a_af;
    p = (char*) (void*) (ai->ai_addr);
    memcpy(p + afd->a_off, addr, (size_t) afd->a_addrlen);
    return ai;
}

static int get_portmatch(const struct addrinfo* ai, const char* servname) {
    assert(ai != NULL);
    /* servname may be NULL */

    return get_port(ai, servname, 1);
}

static int get_port(const struct addrinfo* ai, const char* servname, int matchonly) {
    const char* proto;
    struct servent* sp;
    int port;
    int allownumeric;

    assert(ai != NULL);
    /* servname may be NULL */

    if (servname == NULL) return 0;
    switch (ai->ai_family) {
        case AF_INET:
        case AF_INET6:
            break;
        default:
            return 0;
    }

    switch (ai->ai_socktype) {
        case SOCK_RAW:
            return EAI_SERVICE;
        case SOCK_DGRAM:
        case SOCK_STREAM:
            allownumeric = 1;
            break;
        case ANY:
            allownumeric = 1;
            break;
        default:
            return EAI_SOCKTYPE;
    }

    port = str2number(servname);
    if (port >= 0) {
        if (!allownumeric) return EAI_SERVICE;
        if (port < 0 || port > 65535) return EAI_SERVICE;
        port = htons(port);
    } else {
        if (ai->ai_flags & AI_NUMERICSERV) return EAI_NONAME;

        switch (ai->ai_socktype) {
            case SOCK_DGRAM:
                proto = "udp";
                break;
            case SOCK_STREAM:
                proto = "tcp";
                break;
            default:
                proto = NULL;
                break;
        }

        if ((sp = getservbyname(servname, proto)) == NULL) return EAI_SERVICE;
        port = sp->s_port;
    }

    if (!matchonly) {
        switch (ai->ai_family) {
            case AF_INET:
                ((struct sockaddr_in*) (void*) ai->ai_addr)->sin_port = port;
                break;
            case AF_INET6:
                ((struct sockaddr_in6*) (void*) ai->ai_addr)->sin6_port = port;
                break;
        }
    }

    return 0;
}

static const struct afd* find_afd(int af) {
    const struct afd* afd;

    if (af == PF_UNSPEC) return NULL;
    for (afd = afdl; afd->a_af; afd++) {
        if (afd->a_af == af) return afd;
    }
    return NULL;
}

// Convert a string to a scope identifier.
static int ip6_str2scopeid(const char* scope, struct sockaddr_in6* sin6, u_int32_t* scopeid) {
    u_long lscopeid;
    struct in6_addr* a6;
    char* ep;

    assert(scope != NULL);
    assert(sin6 != NULL);
    assert(scopeid != NULL);

    a6 = &sin6->sin6_addr;

    /* empty scopeid portion is invalid */
    if (*scope == '\0') return -1;

    if (IN6_IS_ADDR_LINKLOCAL(a6) || IN6_IS_ADDR_MC_LINKLOCAL(a6)) {
        /*
         * We currently assume a one-to-one mapping between links
         * and interfaces, so we simply use interface indices for
         * like-local scopes.
         */
        *scopeid = if_nametoindex(scope);
        if (*scopeid == 0) goto trynumeric;
        return 0;
    }

    /* still unclear about literal, allow numeric only - placeholder */
    if (IN6_IS_ADDR_SITELOCAL(a6) || IN6_IS_ADDR_MC_SITELOCAL(a6)) goto trynumeric;
    if (IN6_IS_ADDR_MC_ORGLOCAL(a6))
        goto trynumeric;
    else
        goto trynumeric; /* global */

    /* try to convert to a numeric id as a last resort */
trynumeric:
    errno = 0;
    lscopeid = strtoul(scope, &ep, 10);
    *scopeid = (u_int32_t)(lscopeid & 0xffffffffUL);
    if (errno == 0 && ep && *ep == '\0' && *scopeid == lscopeid)
        return 0;
    else
        return -1;
}

/* code duplicate with gethnamaddr.c */

#define BOUNDED_INCR(x)      \
    do {                     \
        BOUNDS_CHECK(cp, x); \
        cp += (x);           \
    } while (0)

#define BOUNDS_CHECK(ptr, count)     \
    do {                             \
        if (eom - (ptr) < (count)) { \
            *herrno = NO_RECOVERY;   \
            return NULL;             \
        }                            \
    } while (0)

static struct addrinfo* getanswer(const querybuf* answer, int anslen, const char* qname, int qtype,
                                  const struct addrinfo* pai, int* herrno) {
    struct addrinfo sentinel = {};
    struct addrinfo *cur;
    struct addrinfo ai;
    const struct afd* afd;
    char* canonname;
    const HEADER* hp;
    const u_char* cp;
    int n;
    const u_char* eom;
    char *bp, *ep;
    int type, ancount, qdcount;
    int haveanswer, had_error;
    char tbuf[MAXDNAME];
    int (*name_ok)(const char*);
    char hostbuf[8 * 1024];

    assert(answer != NULL);
    assert(qname != NULL);
    assert(pai != NULL);

    cur = &sentinel;

    canonname = NULL;
    eom = answer->buf + anslen;
    switch (qtype) {
        case T_A:
        case T_AAAA:
        case T_ANY: /*use T_ANY only for T_A/T_AAAA lookup*/
            name_ok = res_hnok;
            break;
        default:
            return NULL; /* XXX should be abort(); */
    }
    /*
     * find first satisfactory answer
     */
    hp = &answer->hdr;
    ancount = ntohs(hp->ancount);
    qdcount = ntohs(hp->qdcount);
    bp = hostbuf;
    ep = hostbuf + sizeof hostbuf;
    cp = answer->buf;
    BOUNDED_INCR(HFIXEDSZ);
    if (qdcount != 1) {
        *herrno = NO_RECOVERY;
        return (NULL);
    }
    n = dn_expand(answer->buf, eom, cp, bp, ep - bp);
    if ((n < 0) || !(*name_ok)(bp)) {
        *herrno = NO_RECOVERY;
        return (NULL);
    }
    BOUNDED_INCR(n + QFIXEDSZ);
    if (qtype == T_A || qtype == T_AAAA || qtype == T_ANY) {
        /* res_send() has already verified that the query name is the
         * same as the one we sent; this just gets the expanded name
         * (i.e., with the succeeding search-domain tacked on).
         */
        n = strlen(bp) + 1; /* for the \0 */
        if (n >= MAXHOSTNAMELEN) {
            *herrno = NO_RECOVERY;
            return (NULL);
        }
        canonname = bp;
        bp += n;
        /* The qname can be abbreviated, but h_name is now absolute. */
        qname = canonname;
    }
    haveanswer = 0;
    had_error = 0;
    while (ancount-- > 0 && cp < eom && !had_error) {
        n = dn_expand(answer->buf, eom, cp, bp, ep - bp);
        if ((n < 0) || !(*name_ok)(bp)) {
            had_error++;
            continue;
        }
        cp += n; /* name */
        BOUNDS_CHECK(cp, 3 * INT16SZ + INT32SZ);
        type = ntohs(*reinterpret_cast<const uint16_t*>(cp));
        cp += INT16SZ; /* type */
        int cl = ntohs(*reinterpret_cast<const uint16_t*>(cp));
        cp += INT16SZ + INT32SZ; /* class, TTL */
        n = ntohs(*reinterpret_cast<const uint16_t*>(cp));
        cp += INT16SZ; /* len */
        BOUNDS_CHECK(cp, n);
        if (cl != C_IN) {
            /* XXX - debug? syslog? */
            cp += n;
            continue; /* XXX - had_error++ ? */
        }
        if ((qtype == T_A || qtype == T_AAAA || qtype == T_ANY) && type == T_CNAME) {
            n = dn_expand(answer->buf, eom, cp, tbuf, sizeof tbuf);
            if ((n < 0) || !(*name_ok)(tbuf)) {
                had_error++;
                continue;
            }
            cp += n;
            /* Get canonical name. */
            n = strlen(tbuf) + 1; /* for the \0 */
            if (n > ep - bp || n >= MAXHOSTNAMELEN) {
                had_error++;
                continue;
            }
            strlcpy(bp, tbuf, (size_t)(ep - bp));
            canonname = bp;
            bp += n;
            continue;
        }
        if (qtype == T_ANY) {
            if (!(type == T_A || type == T_AAAA)) {
                cp += n;
                continue;
            }
        } else if (type != qtype) {
            if (type != T_KEY && type != T_SIG)
                LOG(DEBUG) << __func__ << ": asked for \"" << qname << " " << p_class(C_IN) << " "
                           << p_type(qtype) << "\", got type \"" << p_type(type) << "\"";
            cp += n;
            continue; /* XXX - had_error++ ? */
        }
        switch (type) {
            case T_A:
            case T_AAAA:
                if (strcasecmp(canonname, bp) != 0) {
                    LOG(DEBUG) << __func__ << ": asked for \"" << canonname << "\", got \"" << bp
                               << "\"";
                    cp += n;
                    continue; /* XXX - had_error++ ? */
                }
                if (type == T_A && n != INADDRSZ) {
                    cp += n;
                    continue;
                }
                if (type == T_AAAA && n != IN6ADDRSZ) {
                    cp += n;
                    continue;
                }
                if (type == T_AAAA) {
                    struct in6_addr in6;
                    memcpy(&in6, cp, IN6ADDRSZ);
                    if (IN6_IS_ADDR_V4MAPPED(&in6)) {
                        cp += n;
                        continue;
                    }
                }
                if (!haveanswer) {
                    int nn;

                    canonname = bp;
                    nn = strlen(bp) + 1; /* for the \0 */
                    bp += nn;
                }

                /* don't overwrite pai */
                ai = *pai;
                ai.ai_family = (type == T_A) ? AF_INET : AF_INET6;
                afd = find_afd(ai.ai_family);
                if (afd == NULL) {
                    cp += n;
                    continue;
                }
                cur->ai_next = get_ai(&ai, afd, (const char*) cp);
                if (cur->ai_next == NULL) had_error++;
                while (cur && cur->ai_next) cur = cur->ai_next;
                cp += n;
                break;
            default:
                abort();
        }
        if (!had_error) haveanswer++;
    }
    if (haveanswer) {
        if (!canonname)
            (void) get_canonname(pai, sentinel.ai_next, qname);
        else
            (void) get_canonname(pai, sentinel.ai_next, canonname);
        *herrno = NETDB_SUCCESS;
        return sentinel.ai_next;
    }

    *herrno = NO_RECOVERY;
    return NULL;
}

struct addrinfo_sort_elem {
    struct addrinfo* ai;
    int has_src_addr;
    sockaddr_union src_addr;
    int original_order;
};

static int _get_scope(const struct sockaddr* addr) {
    if (addr->sa_family == AF_INET6) {
        const struct sockaddr_in6* addr6 = (const struct sockaddr_in6*) addr;
        if (IN6_IS_ADDR_MULTICAST(&addr6->sin6_addr)) {
            return IPV6_ADDR_MC_SCOPE(&addr6->sin6_addr);
        } else if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr) ||
                   IN6_IS_ADDR_LINKLOCAL(&addr6->sin6_addr)) {
            /*
             * RFC 4291 section 2.5.3 says loopback is to be treated as having
             * link-local scope.
             */
            return IPV6_ADDR_SCOPE_LINKLOCAL;
        } else if (IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr)) {
            return IPV6_ADDR_SCOPE_SITELOCAL;
        } else {
            return IPV6_ADDR_SCOPE_GLOBAL;
        }
    } else if (addr->sa_family == AF_INET) {
        const struct sockaddr_in* addr4 = (const struct sockaddr_in*) addr;
        unsigned long int na = ntohl(addr4->sin_addr.s_addr);

        if (IN_LOOPBACK(na) ||                 /* 127.0.0.0/8 */
            (na & 0xffff0000) == 0xa9fe0000) { /* 169.254.0.0/16 */
            return IPV6_ADDR_SCOPE_LINKLOCAL;
        } else {
            /*
             * RFC 6724 section 3.2. Other IPv4 addresses, including private addresses
             * and shared addresses (100.64.0.0/10), are assigned global scope.
             */
            return IPV6_ADDR_SCOPE_GLOBAL;
        }
    } else {
        /*
         * This should never happen.
         * Return a scope with low priority as a last resort.
         */
        return IPV6_ADDR_SCOPE_NODELOCAL;
    }
}

/* These macros are modelled after the ones in <netinet/in6.h>. */

/* RFC 4380, section 2.6 */
#define IN6_IS_ADDR_TEREDO(a) \
    ((*(const uint32_t*) (const void*) (&(a)->s6_addr[0]) == ntohl(0x20010000)))

/* RFC 3056, section 2. */
#define IN6_IS_ADDR_6TO4(a) (((a)->s6_addr[0] == 0x20) && ((a)->s6_addr[1] == 0x02))

/* 6bone testing address area (3ffe::/16), deprecated in RFC 3701. */
#define IN6_IS_ADDR_6BONE(a) (((a)->s6_addr[0] == 0x3f) && ((a)->s6_addr[1] == 0xfe))

/*
 * Get the label for a given IPv4/IPv6 address.
 * RFC 6724, section 2.1.
 */

static int _get_label(const struct sockaddr* addr) {
    if (addr->sa_family == AF_INET) {
        return 4;
    } else if (addr->sa_family == AF_INET6) {
        const struct sockaddr_in6* addr6 = (const struct sockaddr_in6*) addr;
        if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr)) {
            return 0;
        } else if (IN6_IS_ADDR_V4MAPPED(&addr6->sin6_addr)) {
            return 4;
        } else if (IN6_IS_ADDR_6TO4(&addr6->sin6_addr)) {
            return 2;
        } else if (IN6_IS_ADDR_TEREDO(&addr6->sin6_addr)) {
            return 5;
        } else if (IN6_IS_ADDR_ULA(&addr6->sin6_addr)) {
            return 13;
        } else if (IN6_IS_ADDR_V4COMPAT(&addr6->sin6_addr)) {
            return 3;
        } else if (IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr)) {
            return 11;
        } else if (IN6_IS_ADDR_6BONE(&addr6->sin6_addr)) {
            return 12;
        } else {
            /* All other IPv6 addresses, including global unicast addresses. */
            return 1;
        }
    } else {
        /*
         * This should never happen.
         * Return a semi-random label as a last resort.
         */
        return 1;
    }
}

/*
 * Get the precedence for a given IPv4/IPv6 address.
 * RFC 6724, section 2.1.
 */

static int _get_precedence(const struct sockaddr* addr) {
    if (addr->sa_family == AF_INET) {
        return 35;
    } else if (addr->sa_family == AF_INET6) {
        const struct sockaddr_in6* addr6 = (const struct sockaddr_in6*) addr;
        if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr)) {
            return 50;
        } else if (IN6_IS_ADDR_V4MAPPED(&addr6->sin6_addr)) {
            return 35;
        } else if (IN6_IS_ADDR_6TO4(&addr6->sin6_addr)) {
            return 30;
        } else if (IN6_IS_ADDR_TEREDO(&addr6->sin6_addr)) {
            return 5;
        } else if (IN6_IS_ADDR_ULA(&addr6->sin6_addr)) {
            return 3;
        } else if (IN6_IS_ADDR_V4COMPAT(&addr6->sin6_addr) ||
                   IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr) ||
                   IN6_IS_ADDR_6BONE(&addr6->sin6_addr)) {
            return 1;
        } else {
            /* All other IPv6 addresses, including global unicast addresses. */
            return 40;
        }
    } else {
        return 1;
    }
}

/*
 * Find number of matching initial bits between the two addresses a1 and a2.
 */

static int _common_prefix_len(const struct in6_addr* a1, const struct in6_addr* a2) {
    const char* p1 = (const char*) a1;
    const char* p2 = (const char*) a2;
    unsigned i;

    for (i = 0; i < sizeof(*a1); ++i) {
        int x, j;

        if (p1[i] == p2[i]) {
            continue;
        }
        x = p1[i] ^ p2[i];
        for (j = 0; j < CHAR_BIT; ++j) {
            if (x & (1 << (CHAR_BIT - 1))) {
                return i * CHAR_BIT + j;
            }
            x <<= 1;
        }
    }
    return sizeof(*a1) * CHAR_BIT;
}

/*
 * Compare two source/destination address pairs.
 * RFC 6724, section 6.
 */

static int _rfc6724_compare(const void* ptr1, const void* ptr2) {
    const struct addrinfo_sort_elem* a1 = (const struct addrinfo_sort_elem*) ptr1;
    const struct addrinfo_sort_elem* a2 = (const struct addrinfo_sort_elem*) ptr2;
    int scope_src1, scope_dst1, scope_match1;
    int scope_src2, scope_dst2, scope_match2;
    int label_src1, label_dst1, label_match1;
    int label_src2, label_dst2, label_match2;
    int precedence1, precedence2;
    int prefixlen1, prefixlen2;

    /* Rule 1: Avoid unusable destinations. */
    if (a1->has_src_addr != a2->has_src_addr) {
        return a2->has_src_addr - a1->has_src_addr;
    }

    /* Rule 2: Prefer matching scope. */
    scope_src1 = _get_scope(&a1->src_addr.sa);
    scope_dst1 = _get_scope(a1->ai->ai_addr);
    scope_match1 = (scope_src1 == scope_dst1);

    scope_src2 = _get_scope(&a2->src_addr.sa);
    scope_dst2 = _get_scope(a2->ai->ai_addr);
    scope_match2 = (scope_src2 == scope_dst2);

    if (scope_match1 != scope_match2) {
        return scope_match2 - scope_match1;
    }

    /*
     * Rule 3: Avoid deprecated addresses.
     * TODO(sesse): We don't currently have a good way of finding this.
     */

    /*
     * Rule 4: Prefer home addresses.
     * TODO(sesse): We don't currently have a good way of finding this.
     */

    /* Rule 5: Prefer matching label. */
    label_src1 = _get_label(&a1->src_addr.sa);
    label_dst1 = _get_label(a1->ai->ai_addr);
    label_match1 = (label_src1 == label_dst1);

    label_src2 = _get_label(&a2->src_addr.sa);
    label_dst2 = _get_label(a2->ai->ai_addr);
    label_match2 = (label_src2 == label_dst2);

    if (label_match1 != label_match2) {
        return label_match2 - label_match1;
    }

    /* Rule 6: Prefer higher precedence. */
    precedence1 = _get_precedence(a1->ai->ai_addr);
    precedence2 = _get_precedence(a2->ai->ai_addr);
    if (precedence1 != precedence2) {
        return precedence2 - precedence1;
    }

    /*
     * Rule 7: Prefer native transport.
     * TODO(sesse): We don't currently have a good way of finding this.
     */

    /* Rule 8: Prefer smaller scope. */
    if (scope_dst1 != scope_dst2) {
        return scope_dst1 - scope_dst2;
    }

    /*
     * Rule 9: Use longest matching prefix.
     * We implement this for IPv6 only, as the rules in RFC 6724 don't seem
     * to work very well directly applied to IPv4. (glibc uses information from
     * the routing table for a custom IPv4 implementation here.)
     */
    if (a1->has_src_addr && a1->ai->ai_addr->sa_family == AF_INET6 && a2->has_src_addr &&
        a2->ai->ai_addr->sa_family == AF_INET6) {
        const struct sockaddr_in6* a1_src = &a1->src_addr.sin6;
        const struct sockaddr_in6* a1_dst = (const struct sockaddr_in6*) a1->ai->ai_addr;
        const struct sockaddr_in6* a2_src = &a2->src_addr.sin6;
        const struct sockaddr_in6* a2_dst = (const struct sockaddr_in6*) a2->ai->ai_addr;
        prefixlen1 = _common_prefix_len(&a1_src->sin6_addr, &a1_dst->sin6_addr);
        prefixlen2 = _common_prefix_len(&a2_src->sin6_addr, &a2_dst->sin6_addr);
        if (prefixlen1 != prefixlen2) {
            return prefixlen2 - prefixlen1;
        }
    }

    /*
     * Rule 10: Leave the order unchanged.
     * We need this since qsort() is not necessarily stable.
     */
    return a1->original_order - a2->original_order;
}

/*
 * Find the source address that will be used if trying to connect to the given
 * address. src_addr must be large enough to hold a struct sockaddr_in6.
 *
 * Returns 1 if a source address was found, 0 if the address is unreachable,
 * and -1 if a fatal error occurred. If 0 or -1, the contents of src_addr are
 * undefined.
 */

static int _find_src_addr(const struct sockaddr* addr, struct sockaddr* src_addr, unsigned mark,
                          uid_t uid) {
    int sock;
    int ret;
    socklen_t len;

    switch (addr->sa_family) {
        case AF_INET:
            len = sizeof(struct sockaddr_in);
            break;
        case AF_INET6:
            len = sizeof(struct sockaddr_in6);
            break;
        default:
            /* No known usable source address for non-INET families. */
            return 0;
    }

    sock = socket(addr->sa_family, SOCK_DGRAM | SOCK_CLOEXEC, IPPROTO_UDP);
    if (sock == -1) {
        if (errno == EAFNOSUPPORT) {
            return 0;
        } else {
            return -1;
        }
    }
    if (mark != MARK_UNSET && setsockopt(sock, SOL_SOCKET, SO_MARK, &mark, sizeof(mark)) < 0) {
        close(sock);
        return 0;
    }
    if (uid > 0 && uid != NET_CONTEXT_INVALID_UID && fchown(sock, uid, (gid_t) -1) < 0) {
        close(sock);
        return 0;
    }
    do {
        ret = connect(sock, addr, len);
    } while (ret == -1 && errno == EINTR);

    if (ret == -1) {
        close(sock);
        return 0;
    }

    if (src_addr && getsockname(sock, src_addr, &len) == -1) {
        close(sock);
        return -1;
    }
    close(sock);
    return 1;
}

/*
 * Sort the linked list starting at sentinel->ai_next in RFC6724 order.
 * Will leave the list unchanged if an error occurs.
 */

static void _rfc6724_sort(struct addrinfo* list_sentinel, unsigned mark, uid_t uid) {
    struct addrinfo* cur;
    int nelem = 0, i;
    struct addrinfo_sort_elem* elems;

    cur = list_sentinel->ai_next;
    while (cur) {
        ++nelem;
        cur = cur->ai_next;
    }

    elems = (struct addrinfo_sort_elem*) malloc(nelem * sizeof(struct addrinfo_sort_elem));
    if (elems == NULL) {
        goto error;
    }

    /*
     * Convert the linked list to an array that also contains the candidate
     * source address for each destination address.
     */
    for (i = 0, cur = list_sentinel->ai_next; i < nelem; ++i, cur = cur->ai_next) {
        int has_src_addr;
        assert(cur != NULL);
        elems[i].ai = cur;
        elems[i].original_order = i;

        has_src_addr = _find_src_addr(cur->ai_addr, &elems[i].src_addr.sa, mark, uid);
        if (has_src_addr == -1) {
            goto error;
        }
        elems[i].has_src_addr = has_src_addr;
    }

    /* Sort the addresses, and rearrange the linked list so it matches the sorted order. */
    qsort((void*) elems, nelem, sizeof(struct addrinfo_sort_elem), _rfc6724_compare);

    list_sentinel->ai_next = elems[0].ai;
    for (i = 0; i < nelem - 1; ++i) {
        elems[i].ai->ai_next = elems[i + 1].ai;
    }
    elems[nelem - 1].ai->ai_next = NULL;

error:
    free(elems);
}

static int dns_getaddrinfo(const char* name, const addrinfo* pai,
                           const android_net_context* netcontext, addrinfo** rv) {
    res_target q = {};
    res_target q2 = {};

    auto buf = std::make_unique<querybuf>();
    auto buf2 = std::make_unique<querybuf>();

    switch (pai->ai_family) {
        case AF_UNSPEC: {
            /* prefer IPv6 */
            q.name = name;
            q.qclass = C_IN;
            q.answer = buf->buf;
            q.anslen = sizeof(buf->buf);
            int query_ipv6 = 1, query_ipv4 = 1;
            if (pai->ai_flags & AI_ADDRCONFIG) {
                query_ipv6 = have_ipv6(netcontext->app_mark, netcontext->uid);
                query_ipv4 = have_ipv4(netcontext->app_mark, netcontext->uid);
            }
            if (query_ipv6) {
                q.qtype = T_AAAA;
                if (query_ipv4) {
                    q.next = &q2;
                    q2.name = name;
                    q2.qclass = C_IN;
                    q2.qtype = T_A;
                    q2.answer = buf2->buf;
                    q2.anslen = sizeof(buf2->buf);
                }
            } else if (query_ipv4) {
                q.qtype = T_A;
            } else {
                return EAI_NODATA;
            }
            break;
        }
        case AF_INET:
            q.name = name;
            q.qclass = C_IN;
            q.qtype = T_A;
            q.answer = buf->buf;
            q.anslen = sizeof(buf->buf);
            break;
        case AF_INET6:
            q.name = name;
            q.qclass = C_IN;
            q.qtype = T_AAAA;
            q.answer = buf->buf;
            q.anslen = sizeof(buf->buf);
            break;
        default:
            return EAI_FAMILY;
    }

    res_state res = res_get_state();
    if (!res) return EAI_MEMORY;

    /* this just sets our netid val in the thread private data so we don't have to
     * modify the api's all the way down to res_send.c's res_nsend.  We could
     * fully populate the thread private data here, but if we get down there
     * and have a cache hit that would be wasted, so we do the rest there on miss
     */
    res_setnetcontext(res, netcontext);

    int he;
    if (res_searchN(name, &q, res, &he) < 0) {
        // Return h_errno (he) to catch more detailed errors rather than EAI_NODATA.
        // Note that res_searchN() doesn't set the pair NETDB_INTERNAL and errno.
        // See also herrnoToAiErrno().
        return herrnoToAiErrno(he);
    }

    addrinfo sentinel = {};
    addrinfo* cur = &sentinel;
    addrinfo* ai = getanswer(buf.get(), q.n, q.name, q.qtype, pai, &he);
    if (ai) {
        cur->ai_next = ai;
        while (cur && cur->ai_next) cur = cur->ai_next;
    }
    if (q.next) {
        ai = getanswer(buf2.get(), q2.n, q2.name, q2.qtype, pai, &he);
        if (ai) cur->ai_next = ai;
    }
    if (sentinel.ai_next == NULL) {
        // Note that getanswer() doesn't set the pair NETDB_INTERNAL and errno.
        // See also herrnoToAiErrno().
        return herrnoToAiErrno(he);
    }

    _rfc6724_sort(&sentinel, netcontext->app_mark, netcontext->uid);

    *rv = sentinel.ai_next;
    return 0;
}

static void _sethtent(FILE** hostf) {
    if (!*hostf)
        *hostf = fopen(_PATH_HOSTS, "re");
    else
        rewind(*hostf);
}

static void _endhtent(FILE** hostf) {
    if (*hostf) {
        (void) fclose(*hostf);
        *hostf = NULL;
    }
}

static struct addrinfo* _gethtent(FILE** hostf, const char* name, const struct addrinfo* pai) {
    char* p;
    char *cp, *tname, *cname;
    struct addrinfo *res0, *res;
    int error;
    const char* addr;
    char hostbuf[8 * 1024];

    assert(name != NULL);
    assert(pai != NULL);

    if (!*hostf && !(*hostf = fopen(_PATH_HOSTS, "re"))) return (NULL);
again:
    if (!(p = fgets(hostbuf, sizeof hostbuf, *hostf))) return (NULL);
    if (*p == '#') goto again;
    if (!(cp = strpbrk(p, "#\n"))) goto again;
    *cp = '\0';
    if (!(cp = strpbrk(p, " \t"))) goto again;
    *cp++ = '\0';
    addr = p;
    /* if this is not something we're looking for, skip it. */
    cname = NULL;
    while (cp && *cp) {
        if (*cp == ' ' || *cp == '\t') {
            cp++;
            continue;
        }
        if (!cname) cname = cp;
        tname = cp;
        if ((cp = strpbrk(cp, " \t")) != NULL) *cp++ = '\0';
        if (strcasecmp(name, tname) == 0) goto found;
    }
    goto again;

found:
    error = getaddrinfo_numeric(addr, nullptr, *pai, &res0);
    if (error) goto again;
    for (res = res0; res; res = res->ai_next) {
        /* cover it up */
        res->ai_flags = pai->ai_flags;

        if (pai->ai_flags & AI_CANONNAME) {
            if (get_canonname(pai, res, cname) != 0) {
                freeaddrinfo(res0);
                goto again;
            }
        }
    }
    return res0;
}

static bool files_getaddrinfo(const char* name, const addrinfo* pai, addrinfo** res) {
    struct addrinfo sentinel = {};
    struct addrinfo *p, *cur;
    FILE* hostf = NULL;

    cur = &sentinel;

    _sethtent(&hostf);
    while ((p = _gethtent(&hostf, name, pai)) != NULL) {
        cur->ai_next = p;
        while (cur && cur->ai_next) cur = cur->ai_next;
    }
    _endhtent(&hostf);

    *res = sentinel.ai_next;
    return sentinel.ai_next != NULL;
}

/* resolver logic */

/*
 * Formulate a normal query, send, and await answer.
 * Returned answer is placed in supplied buffer "answer".
 * Perform preliminary check of answer, returning success only
 * if no error is indicated and the answer count is nonzero.
 * Return the size of the response on success, -1 on error.
 * Error number is left in *herrno.
 *
 * Caller must parse answer and determine whether it answers the question.
 */
static int res_queryN(const char* name, res_target* target, res_state res, int* herrno) {
    u_char buf[MAXPACKET];
    HEADER* hp;
    int n;
    struct res_target* t;
    int rcode;
    int ancount;

    assert(name != NULL);
    /* XXX: target may be NULL??? */

    rcode = NOERROR;
    ancount = 0;

    for (t = target; t; t = t->next) {
        u_char* answer;
        int anslen;

        hp = (HEADER*) (void*) t->answer;
        bool retried = false;
    again:
        hp->rcode = NOERROR; /* default */

        /* make it easier... */
        int cl = t->qclass;
        int type = t->qtype;
        answer = t->answer;
        anslen = t->anslen;

        LOG(DEBUG) << __func__ << ": (" << cl << ", " << type << ")";

        n = res_nmkquery(res, QUERY, name, cl, type, NULL, 0, NULL, buf, sizeof(buf));
        if (n > 0 && (res->options & (RES_USE_EDNS0 | RES_USE_DNSSEC)) != 0 && !retried)
            n = res_nopt(res, n, buf, sizeof(buf), anslen);
        if (n <= 0) {
            LOG(ERROR) << __func__ << ": res_nmkquery failed";
            *herrno = NO_RECOVERY;
            return n;
        }

        n = res_nsend(res, buf, n, answer, anslen, &rcode, 0);
        if (n < 0 || hp->rcode != NOERROR || ntohs(hp->ancount) == 0) {
            // Record rcode from DNS response header only if no timeout.
            // Keep rcode timeout for reporting later if any.
            if (rcode != RCODE_TIMEOUT) rcode = hp->rcode; /* record most recent error */
            /* if the query choked with EDNS0, retry without EDNS0 */
            if ((res->options & (RES_USE_EDNS0 | RES_USE_DNSSEC)) != 0 &&
                (res->_flags & RES_F_EDNS0ERR) && !retried) {
                LOG(DEBUG) << __func__ << ": retry without EDNS0";
                retried = true;
                goto again;
            }
            LOG(DEBUG) << __func__ << ": rcode=" << hp->rcode << ", ancount=" << ntohs(hp->ancount);
            continue;
        }

        ancount += ntohs(hp->ancount);

        t->n = n;
    }

    if (ancount == 0) {
        switch (rcode) {
            // Not defined in RFC.
            case RCODE_TIMEOUT:
                // DNS metrics monitors DNS query timeout.
                *herrno = NETD_RESOLV_H_ERRNO_EXT_TIMEOUT;  // extended h_errno.
                break;
            // Defined in RFC 1035 section 4.1.1.
            case NXDOMAIN:
                *herrno = HOST_NOT_FOUND;
                break;
            case SERVFAIL:
                *herrno = TRY_AGAIN;
                break;
            case NOERROR:
                *herrno = NO_DATA;
                break;
            case FORMERR:
            case NOTIMP:
            case REFUSED:
            default:
                *herrno = NO_RECOVERY;
                break;
        }
        return -1;
    }
    return ancount;
}

/*
 * Formulate a normal query, send, and retrieve answer in supplied buffer.
 * Return the size of the response on success, -1 on error.
 * If enabled, implement search rules until answer or unrecoverable failure
 * is detected.  Error code, if any, is left in *herrno.
 */
static int res_searchN(const char* name, res_target* target, res_state res, int* herrno) {
    const char *cp, *const *domain;
    HEADER* hp;
    u_int dots;
    int trailing_dot, ret, saved_herrno;
    int got_nodata = 0, got_servfail = 0, tried_as_is = 0;

    assert(name != NULL);
    assert(target != NULL);

    hp = (HEADER*) (void*) target->answer; /*XXX*/

    errno = 0;
    *herrno = HOST_NOT_FOUND; /* default, if we never query */
    dots = 0;
    for (cp = name; *cp; cp++) dots += (*cp == '.');
    trailing_dot = 0;
    if (cp > name && *--cp == '.') trailing_dot++;

    /*
     * If there are dots in the name already, let's just give it a try
     * 'as is'.  The threshold can be set with the "ndots" option.
     */
    saved_herrno = -1;
    if (dots >= res->ndots) {
        ret = res_querydomainN(name, NULL, target, res, herrno);
        if (ret > 0) return (ret);
        saved_herrno = *herrno;
        tried_as_is++;
    }

    /*
     * We do at least one level of search if
     *	- there is no dot and RES_DEFNAME is set, or
     *	- there is at least one dot, there is no trailing dot,
     *	  and RES_DNSRCH is set.
     */
    if ((!dots && (res->options & RES_DEFNAMES)) ||
        (dots && !trailing_dot && (res->options & RES_DNSRCH))) {
        int done = 0;

        /* Unfortunately we need to set stuff up before
         * the domain stuff is tried.  Will have a better
         * fix after thread pools are used.
         */
        _resolv_populate_res_for_net(res);

        for (domain = (const char* const*) res->dnsrch; *domain && !done; domain++) {
            ret = res_querydomainN(name, *domain, target, res, herrno);
            if (ret > 0) return ret;

            /*
             * If no server present, give up.
             * If name isn't found in this domain,
             * keep trying higher domains in the search list
             * (if that's enabled).
             * On a NO_DATA error, keep trying, otherwise
             * a wildcard entry of another type could keep us
             * from finding this entry higher in the domain.
             * If we get some other error (negative answer or
             * server failure), then stop searching up,
             * but try the input name below in case it's
             * fully-qualified.
             */
            if (errno == ECONNREFUSED) {
                *herrno = TRY_AGAIN;
                return -1;
            }

            switch (*herrno) {
                case NO_DATA:
                    got_nodata++;
                    [[fallthrough]];
                case HOST_NOT_FOUND:
                    /* keep trying */
                    break;
                case TRY_AGAIN:
                    if (hp->rcode == SERVFAIL) {
                        /* try next search element, if any */
                        got_servfail++;
                        break;
                    }
                    [[fallthrough]];
                default:
                    /* anything else implies that we're done */
                    done++;
            }
            /*
             * if we got here for some reason other than DNSRCH,
             * we only wanted one iteration of the loop, so stop.
             */
            if (!(res->options & RES_DNSRCH)) done++;
        }
    }

    /*
     * if we have not already tried the name "as is", do that now.
     * note that we do this regardless of how many dots were in the
     * name or whether it ends with a dot.
     */
    if (!tried_as_is) {
        ret = res_querydomainN(name, NULL, target, res, herrno);
        if (ret > 0) return ret;
    }

    /*
     * if we got here, we didn't satisfy the search.
     * if we did an initial full query, return that query's h_errno
     * (note that we wouldn't be here if that query had succeeded).
     * else if we ever got a nodata, send that back as the reason.
     * else send back meaningless h_errno, that being the one from
     * the last DNSRCH we did.
     */
    if (saved_herrno != -1)
        *herrno = saved_herrno;
    else if (got_nodata)
        *herrno = NO_DATA;
    else if (got_servfail)
        *herrno = TRY_AGAIN;
    return -1;
}

/*
 * Perform a call on res_query on the concatenation of name and domain,
 * removing a trailing dot from name if domain is NULL.
 */
static int res_querydomainN(const char* name, const char* domain, res_target* target, res_state res,
                            int* herrno) {
    char nbuf[MAXDNAME];
    const char* longname = nbuf;
    size_t n, d;

    assert(name != NULL);

    if (domain == NULL) {
        // Check for trailing '.'; copy without '.' if present.
        n = strlen(name);
        if (n + 1 > sizeof(nbuf)) {
            *herrno = NO_RECOVERY;
            return -1;
        }
        if (n > 0 && name[--n] == '.') {
            strncpy(nbuf, name, n);
            nbuf[n] = '\0';
        } else
            longname = name;
    } else {
        n = strlen(name);
        d = strlen(domain);
        if (n + 1 + d + 1 > sizeof(nbuf)) {
            *herrno = NO_RECOVERY;
            return -1;
        }
        snprintf(nbuf, sizeof(nbuf), "%s.%s", name, domain);
    }
    return res_queryN(longname, target, res, herrno);
}