# Copyright 2014 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
import math
import os
import bisect_utils
import math_utils
import ttest
def ConfidenceScore(good_results_lists, bad_results_lists):
"""Calculates a confidence score.
This score is a percentage which represents our degree of confidence in the
proposition that the good results and bad results are distinct groups, and
their differences aren't due to chance alone.
Args:
good_results_lists: A list of lists of "good" result numbers.
bad_results_lists: A list of lists of "bad" result numbers.
Returns:
A number in the range [0, 100].
"""
# If there's only one item in either list, this means only one revision was
# classified good or bad; this isn't good enough evidence to make a decision.
# If an empty list was passed, that also implies zero confidence.
if len(good_results_lists) <= 1 or len(bad_results_lists) <= 1:
return 0.0
# Flatten the lists of results lists.
sample1 = sum(good_results_lists, [])
sample2 = sum(bad_results_lists, [])
# If there were only empty lists in either of the lists (this is unexpected
# and normally shouldn't happen), then we also want to return 0.
if not sample1 or not sample2:
return 0.0
# The p-value is approximately the probability of obtaining the given set
# of good and bad values just by chance.
_, _, p_value = ttest.WelchsTTest(sample1, sample2)
return 100.0 * (1.0 - p_value)
class BisectResults(object):
def __init__(self, depot_registry, source_control):
self._depot_registry = depot_registry
self.revision_data = {}
self.error = None
self._source_control = source_control
@staticmethod
def _FindOtherRegressions(revision_data_sorted, bad_greater_than_good):
"""Compiles a list of other possible regressions from the revision data.
Args:
revision_data_sorted: Sorted list of (revision, revision data) pairs.
bad_greater_than_good: Whether the result value at the "bad" revision is
numerically greater than the result value at the "good" revision.
Returns:
A list of [current_rev, previous_rev, confidence] for other places where
there may have been a regression.
"""
other_regressions = []
previous_values = []
previous_id = None
for current_id, current_data in revision_data_sorted:
current_values = current_data['value']
if current_values:
current_values = current_values['values']
if previous_values:
confidence = ConfidenceScore(previous_values, [current_values])
mean_of_prev_runs = math_utils.Mean(sum(previous_values, []))
mean_of_current_runs = math_utils.Mean(current_values)
# Check that the potential regression is in the same direction as
# the overall regression. If the mean of the previous runs < the
# mean of the current runs, this local regression is in same
# direction.
prev_less_than_current = mean_of_prev_runs < mean_of_current_runs
is_same_direction = (prev_less_than_current if
bad_greater_than_good else not prev_less_than_current)
# Only report potential regressions with high confidence.
if is_same_direction and confidence > 50:
other_regressions.append([current_id, previous_id, confidence])
previous_values.append(current_values)
previous_id = current_id
return other_regressions
def GetResultsDict(self):
"""Prepares and returns information about the final resulsts as a dict.
Returns:
A dictionary with the following fields
'first_working_revision': First good revision.
'last_broken_revision': Last bad revision.
'culprit_revisions': A list of revisions, which contain the bad change
introducing the failure.
'other_regressions': A list of tuples representing other regressions,
which may have occured.
'regression_size': For performance bisects, this is a relative change of
the mean metric value. For other bisects this field always contains
'zero-to-nonzero'.
'regression_std_err': For performance bisects, it is a pooled standard
error for groups of good and bad runs. Not used for other bisects.
'confidence': For performance bisects, it is a confidence that the good
and bad runs are distinct groups. Not used for non-performance
bisects.
'revision_data_sorted': dict mapping revision ids to data about that
revision. Each piece of revision data consists of a dict with the
following keys:
'passed': Represents whether the performance test was successful at
that revision. Possible values include: 1 (passed), 0 (failed),
'?' (skipped), 'F' (build failed).
'depot': The depot that this revision is from (i.e. WebKit)
'external': If the revision is a 'src' revision, 'external' contains
the revisions of each of the external libraries.
'sort': A sort value for sorting the dict in order of commits.
For example:
{
'CL #1':
{
'passed': False,
'depot': 'chromium',
'external': None,
'sort': 0
}
}
"""
revision_data_sorted = sorted(self.revision_data.iteritems(),
key = lambda x: x[1]['sort'])
# Find range where it possibly broke.
first_working_revision = None
first_working_revision_index = -1
last_broken_revision = None
last_broken_revision_index = -1
culprit_revisions = []
other_regressions = []
regression_size = 0.0
regression_std_err = 0.0
confidence = 0.0
for i in xrange(len(revision_data_sorted)):
k, v = revision_data_sorted[i]
if v['passed'] == 1:
if not first_working_revision:
first_working_revision = k
first_working_revision_index = i
if not v['passed']:
last_broken_revision = k
last_broken_revision_index = i
if last_broken_revision != None and first_working_revision != None:
broken_means = []
for i in xrange(0, last_broken_revision_index + 1):
if revision_data_sorted[i][1]['value']:
broken_means.append(revision_data_sorted[i][1]['value']['values'])
working_means = []
for i in xrange(first_working_revision_index, len(revision_data_sorted)):
if revision_data_sorted[i][1]['value']:
working_means.append(revision_data_sorted[i][1]['value']['values'])
# Flatten the lists to calculate mean of all values.
working_mean = sum(working_means, [])
broken_mean = sum(broken_means, [])
# Calculate the approximate size of the regression
mean_of_bad_runs = math_utils.Mean(broken_mean)
mean_of_good_runs = math_utils.Mean(working_mean)
regression_size = 100 * math_utils.RelativeChange(mean_of_good_runs,
mean_of_bad_runs)
if math.isnan(regression_size):
regression_size = 'zero-to-nonzero'
regression_std_err = math.fabs(math_utils.PooledStandardError(
[working_mean, broken_mean]) /
max(0.0001, min(mean_of_good_runs, mean_of_bad_runs))) * 100.0
# Give a "confidence" in the bisect. At the moment we use how distinct the
# values are before and after the last broken revision, and how noisy the
# overall graph is.
confidence = ConfidenceScore(working_means, broken_means)
culprit_revisions = []
cwd = os.getcwd()
self._depot_registry.ChangeToDepotDir(
self.revision_data[last_broken_revision]['depot'])
if self.revision_data[last_broken_revision]['depot'] == 'cros':
# Want to get a list of all the commits and what depots they belong
# to so that we can grab info about each.
cmd = ['repo', 'forall', '-c',
'pwd ; git log --pretty=oneline --before=%d --after=%d' % (
last_broken_revision, first_working_revision + 1)]
output, return_code = bisect_utils.RunProcessAndRetrieveOutput(cmd)
changes = []
assert not return_code, ('An error occurred while running '
'"%s"' % ' '.join(cmd))
last_depot = None
cwd = os.getcwd()
for l in output.split('\n'):
if l:
# Output will be in form:
# /path_to_depot
# /path_to_other_depot
# <SHA1>
# /path_again
# <SHA1>
# etc.
if l[0] == '/':
last_depot = l
else:
contents = l.split(' ')
if len(contents) > 1:
changes.append([last_depot, contents[0]])
for c in changes:
os.chdir(c[0])
info = self._source_control.QueryRevisionInfo(c[1])
culprit_revisions.append((c[1], info, None))
else:
for i in xrange(last_broken_revision_index, len(revision_data_sorted)):
k, v = revision_data_sorted[i]
if k == first_working_revision:
break
self._depot_registry.ChangeToDepotDir(v['depot'])
info = self._source_control.QueryRevisionInfo(k)
culprit_revisions.append((k, info, v['depot']))
os.chdir(cwd)
# Check for any other possible regression ranges.
other_regressions = self._FindOtherRegressions(
revision_data_sorted, mean_of_bad_runs > mean_of_good_runs)
return {
'first_working_revision': first_working_revision,
'last_broken_revision': last_broken_revision,
'culprit_revisions': culprit_revisions,
'other_regressions': other_regressions,
'regression_size': regression_size,
'regression_std_err': regression_std_err,
'confidence': confidence,
'revision_data_sorted': revision_data_sorted
}