/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_BASE_BIT_UTILS_H_ #define ART_RUNTIME_BASE_BIT_UTILS_H_ #include <iterator> #include <limits> #include <type_traits> #include "base/logging.h" #include "base/iteration_range.h" namespace art { template<typename T> static constexpr int CLZ(T x) { static_assert(std::is_integral<T>::value, "T must be integral"); // TODO: assert unsigned. There is currently many uses with signed values. static_assert(sizeof(T) <= sizeof(long long), // NOLINT [runtime/int] [4] "T too large, must be smaller than long long"); return (sizeof(T) == sizeof(uint32_t)) ? __builtin_clz(x) // TODO: __builtin_clz[ll] has undefined behavior for x=0 : __builtin_clzll(x); } template<typename T> static constexpr int CTZ(T x) { static_assert(std::is_integral<T>::value, "T must be integral"); // TODO: assert unsigned. There is currently many uses with signed values. return (sizeof(T) == sizeof(uint32_t)) ? __builtin_ctz(x) : __builtin_ctzll(x); } template<typename T> static constexpr int POPCOUNT(T x) { return (sizeof(T) == sizeof(uint32_t)) ? __builtin_popcount(x) : __builtin_popcountll(x); } // Find the bit position of the most significant bit (0-based), or -1 if there were no bits set. template <typename T> static constexpr ssize_t MostSignificantBit(T value) { static_assert(std::is_integral<T>::value, "T must be integral"); static_assert(std::is_unsigned<T>::value, "T must be unsigned"); static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!"); return (value == 0) ? -1 : std::numeric_limits<T>::digits - 1 - CLZ(value); } // Find the bit position of the least significant bit (0-based), or -1 if there were no bits set. template <typename T> static constexpr ssize_t LeastSignificantBit(T value) { static_assert(std::is_integral<T>::value, "T must be integral"); static_assert(std::is_unsigned<T>::value, "T must be unsigned"); return (value == 0) ? -1 : CTZ(value); } // How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc. template <typename T> static constexpr size_t MinimumBitsToStore(T value) { return static_cast<size_t>(MostSignificantBit(value) + 1); } template <typename T> static constexpr inline T RoundUpToPowerOfTwo(T x) { static_assert(std::is_integral<T>::value, "T must be integral"); static_assert(std::is_unsigned<T>::value, "T must be unsigned"); // NOTE: Undefined if x > (1 << (std::numeric_limits<T>::digits - 1)). return (x < 2u) ? x : static_cast<T>(1u) << (std::numeric_limits<T>::digits - CLZ(x - 1u)); } template<typename T> static constexpr bool IsPowerOfTwo(T x) { static_assert(std::is_integral<T>::value, "T must be integral"); // TODO: assert unsigned. There is currently many uses with signed values. return (x & (x - 1)) == 0; } template<typename T> static inline int WhichPowerOf2(T x) { static_assert(std::is_integral<T>::value, "T must be integral"); // TODO: assert unsigned. There is currently many uses with signed values. DCHECK((x != 0) && IsPowerOfTwo(x)); return CTZ(x); } // For rounding integers. // NOTE: In the absence of std::omit_from_type_deduction<T> or std::identity<T>, use std::decay<T>. template<typename T> static constexpr T RoundDown(T x, typename std::decay<T>::type n) WARN_UNUSED; template<typename T> static constexpr T RoundDown(T x, typename std::decay<T>::type n) { return DCHECK_CONSTEXPR(IsPowerOfTwo(n), , T(0)) (x & -n); } template<typename T> static constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) WARN_UNUSED; template<typename T> static constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) { return RoundDown(x + n - 1, n); } // For aligning pointers. template<typename T> static inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED; template<typename T> static inline T* AlignDown(T* x, uintptr_t n) { return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n)); } template<typename T> static inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED; template<typename T> static inline T* AlignUp(T* x, uintptr_t n) { return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n)); } template<int n, typename T> static inline bool IsAligned(T x) { static_assert((n & (n - 1)) == 0, "n is not a power of two"); return (x & (n - 1)) == 0; } template<int n, typename T> static inline bool IsAligned(T* x) { return IsAligned<n>(reinterpret_cast<const uintptr_t>(x)); } template<typename T> static inline bool IsAlignedParam(T x, int n) { return (x & (n - 1)) == 0; } #define CHECK_ALIGNED(value, alignment) \ CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value) #define DCHECK_ALIGNED(value, alignment) \ DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value) #define DCHECK_ALIGNED_PARAM(value, alignment) \ DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value) // Like sizeof, but count how many bits a type takes. Pass type explicitly. template <typename T> static constexpr size_t BitSizeOf() { static_assert(std::is_integral<T>::value, "T must be integral"); typedef typename std::make_unsigned<T>::type unsigned_type; static_assert(sizeof(T) == sizeof(unsigned_type), "Unexpected type size mismatch!"); static_assert(std::numeric_limits<unsigned_type>::radix == 2, "Unexpected radix!"); return std::numeric_limits<unsigned_type>::digits; } // Like sizeof, but count how many bits a type takes. Infers type from parameter. template <typename T> static constexpr size_t BitSizeOf(T /*x*/) { return BitSizeOf<T>(); } static inline uint16_t Low16Bits(uint32_t value) { return static_cast<uint16_t>(value); } static inline uint16_t High16Bits(uint32_t value) { return static_cast<uint16_t>(value >> 16); } static inline uint32_t Low32Bits(uint64_t value) { return static_cast<uint32_t>(value); } static inline uint32_t High32Bits(uint64_t value) { return static_cast<uint32_t>(value >> 32); } // Check whether an N-bit two's-complement representation can hold value. template <typename T> static inline bool IsInt(size_t N, T value) { if (N == BitSizeOf<T>()) { return true; } else { CHECK_LT(0u, N); CHECK_LT(N, BitSizeOf<T>()); T limit = static_cast<T>(1) << (N - 1u); return (-limit <= value) && (value < limit); } } template <typename T> static constexpr T GetIntLimit(size_t bits) { return DCHECK_CONSTEXPR(bits > 0, "bits cannot be zero", 0) DCHECK_CONSTEXPR(bits < BitSizeOf<T>(), "kBits must be < max.", 0) static_cast<T>(1) << (bits - 1); } template <size_t kBits, typename T> static constexpr bool IsInt(T value) { static_assert(kBits > 0, "kBits cannot be zero."); static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max."); static_assert(std::is_signed<T>::value, "Needs a signed type."); // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is // trivially true. return (kBits == BitSizeOf<T>()) ? true : (-GetIntLimit<T>(kBits) <= value) && (value < GetIntLimit<T>(kBits)); } template <size_t kBits, typename T> static constexpr bool IsUint(T value) { static_assert(kBits > 0, "kBits cannot be zero."); static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max."); static_assert(std::is_integral<T>::value, "Needs an integral type."); // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is // trivially true. // NOTE: To avoid triggering assertion in GetIntLimit(kBits+1) if kBits+1==BitSizeOf<T>(), // use GetIntLimit(kBits)*2u. The unsigned arithmetic works well for us if it overflows. return (0 <= value) && (kBits == BitSizeOf<T>() || (static_cast<typename std::make_unsigned<T>::type>(value) <= GetIntLimit<typename std::make_unsigned<T>::type>(kBits) * 2u - 1u)); } template <size_t kBits, typename T> static constexpr bool IsAbsoluteUint(T value) { static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max."); static_assert(std::is_integral<T>::value, "Needs an integral type."); typedef typename std::make_unsigned<T>::type unsigned_type; return (kBits == BitSizeOf<T>()) ? true : IsUint<kBits>(value < 0 ? static_cast<unsigned_type>(-1 - value) + 1u // Avoid overflow. : static_cast<unsigned_type>(value)); } // Using the Curiously Recurring Template Pattern to implement everything shared // by LowToHighBitIterator and HighToLowBitIterator, i.e. everything but operator*(). template <typename T, typename Iter> class BitIteratorBase : public std::iterator<std::forward_iterator_tag, uint32_t, ptrdiff_t, void, void> { static_assert(std::is_integral<T>::value, "T must be integral"); static_assert(std::is_unsigned<T>::value, "T must be unsigned"); static_assert(sizeof(T) == sizeof(uint32_t) || sizeof(T) == sizeof(uint64_t), "Unsupported size"); public: BitIteratorBase() : bits_(0u) { } explicit BitIteratorBase(T bits) : bits_(bits) { } Iter& operator++() { DCHECK_NE(bits_, 0u); uint32_t bit = *static_cast<Iter&>(*this); bits_ &= ~(static_cast<T>(1u) << bit); return static_cast<Iter&>(*this); } Iter& operator++(int) { Iter tmp(static_cast<Iter&>(*this)); ++*this; return tmp; } protected: T bits_; template <typename U, typename I> friend bool operator==(const BitIteratorBase<U, I>& lhs, const BitIteratorBase<U, I>& rhs); }; template <typename T, typename Iter> bool operator==(const BitIteratorBase<T, Iter>& lhs, const BitIteratorBase<T, Iter>& rhs) { return lhs.bits_ == rhs.bits_; } template <typename T, typename Iter> bool operator!=(const BitIteratorBase<T, Iter>& lhs, const BitIteratorBase<T, Iter>& rhs) { return !(lhs == rhs); } template <typename T> class LowToHighBitIterator : public BitIteratorBase<T, LowToHighBitIterator<T>> { public: using BitIteratorBase<T, LowToHighBitIterator<T>>::BitIteratorBase; uint32_t operator*() const { DCHECK_NE(this->bits_, 0u); return CTZ(this->bits_); } }; template <typename T> class HighToLowBitIterator : public BitIteratorBase<T, HighToLowBitIterator<T>> { public: using BitIteratorBase<T, HighToLowBitIterator<T>>::BitIteratorBase; uint32_t operator*() const { DCHECK_NE(this->bits_, 0u); static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!"); return std::numeric_limits<T>::digits - 1u - CLZ(this->bits_); } }; template <typename T> IterationRange<LowToHighBitIterator<T>> LowToHighBits(T bits) { return IterationRange<LowToHighBitIterator<T>>( LowToHighBitIterator<T>(bits), LowToHighBitIterator<T>()); } template <typename T> IterationRange<HighToLowBitIterator<T>> HighToLowBits(T bits) { return IterationRange<HighToLowBitIterator<T>>( HighToLowBitIterator<T>(bits), HighToLowBitIterator<T>()); } } // namespace art #endif // ART_RUNTIME_BASE_BIT_UTILS_H_