/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_BASE_HASH_SET_H_ #define ART_RUNTIME_BASE_HASH_SET_H_ #include <functional> #include <memory> #include <stdint.h> #include <utility> #include "bit_utils.h" #include "logging.h" namespace art { // Returns true if an item is empty. template <class T> class DefaultEmptyFn { public: void MakeEmpty(T& item) const { item = T(); } bool IsEmpty(const T& item) const { return item == T(); } }; template <class T> class DefaultEmptyFn<T*> { public: void MakeEmpty(T*& item) const { item = nullptr; } bool IsEmpty(const T*& item) const { return item == nullptr; } }; // Low memory version of a hash set, uses less memory than std::unordered_set since elements aren't // boxed. Uses linear probing to resolve collisions. // EmptyFn needs to implement two functions MakeEmpty(T& item) and IsEmpty(const T& item). // TODO: We could get rid of this requirement by using a bitmap, though maybe this would be slower // and more complicated. template <class T, class EmptyFn = DefaultEmptyFn<T>, class HashFn = std::hash<T>, class Pred = std::equal_to<T>, class Alloc = std::allocator<T>> class HashSet { template <class Elem, class HashSetType> class BaseIterator { public: BaseIterator(const BaseIterator&) = default; BaseIterator(BaseIterator&&) = default; BaseIterator(HashSetType* hash_set, size_t index) : index_(index), hash_set_(hash_set) { } BaseIterator& operator=(const BaseIterator&) = default; BaseIterator& operator=(BaseIterator&&) = default; bool operator==(const BaseIterator& other) const { return hash_set_ == other.hash_set_ && this->index_ == other.index_; } bool operator!=(const BaseIterator& other) const { return !(*this == other); } BaseIterator operator++() { // Value after modification. this->index_ = this->NextNonEmptySlot(this->index_, hash_set_); return *this; } BaseIterator operator++(int) { Iterator temp = *this; this->index_ = this->NextNonEmptySlot(this->index_, hash_set_); return temp; } Elem& operator*() const { DCHECK(!hash_set_->IsFreeSlot(this->index_)); return hash_set_->ElementForIndex(this->index_); } Elem* operator->() const { return &**this; } // TODO: Operator -- --(int) private: size_t index_; HashSetType* hash_set_; size_t NextNonEmptySlot(size_t index, const HashSet* hash_set) const { const size_t num_buckets = hash_set->NumBuckets(); DCHECK_LT(index, num_buckets); do { ++index; } while (index < num_buckets && hash_set->IsFreeSlot(index)); return index; } friend class HashSet; }; public: static constexpr double kDefaultMinLoadFactor = 0.5; static constexpr double kDefaultMaxLoadFactor = 0.9; static constexpr size_t kMinBuckets = 1000; typedef BaseIterator<T, HashSet> Iterator; typedef BaseIterator<const T, const HashSet> ConstIterator; // If we don't own the data, this will create a new array which owns the data. void Clear() { DeallocateStorage(); AllocateStorage(1); num_elements_ = 0; elements_until_expand_ = 0; } HashSet() : num_elements_(0), num_buckets_(0), owns_data_(false), data_(nullptr), min_load_factor_(kDefaultMinLoadFactor), max_load_factor_(kDefaultMaxLoadFactor) { Clear(); } HashSet(const HashSet& other) : num_elements_(0), num_buckets_(0), owns_data_(false), data_(nullptr) { *this = other; } HashSet(HashSet&& other) : num_elements_(0), num_buckets_(0), owns_data_(false), data_(nullptr) { *this = std::move(other); } // Construct from existing data. // Read from a block of memory, if make_copy_of_data is false, then data_ points to within the // passed in ptr_. HashSet(const uint8_t* ptr, bool make_copy_of_data, size_t* read_count) { uint64_t temp; size_t offset = 0; offset = ReadFromBytes(ptr, offset, &temp); num_elements_ = static_cast<uint64_t>(temp); offset = ReadFromBytes(ptr, offset, &temp); num_buckets_ = static_cast<uint64_t>(temp); CHECK_LE(num_elements_, num_buckets_); offset = ReadFromBytes(ptr, offset, &temp); elements_until_expand_ = static_cast<uint64_t>(temp); offset = ReadFromBytes(ptr, offset, &min_load_factor_); offset = ReadFromBytes(ptr, offset, &max_load_factor_); if (!make_copy_of_data) { owns_data_ = false; data_ = const_cast<T*>(reinterpret_cast<const T*>(ptr + offset)); offset += sizeof(*data_) * num_buckets_; } else { AllocateStorage(num_buckets_); // Write elements, not that this may not be safe for cross compilation if the elements are // pointer sized. for (size_t i = 0; i < num_buckets_; ++i) { offset = ReadFromBytes(ptr, offset, &data_[i]); } } // Caller responsible for aligning. *read_count = offset; } // Returns how large the table is after being written. If target is null, then no writing happens // but the size is still returned. Target must be 8 byte aligned. size_t WriteToMemory(uint8_t* ptr) { size_t offset = 0; offset = WriteToBytes(ptr, offset, static_cast<uint64_t>(num_elements_)); offset = WriteToBytes(ptr, offset, static_cast<uint64_t>(num_buckets_)); offset = WriteToBytes(ptr, offset, static_cast<uint64_t>(elements_until_expand_)); offset = WriteToBytes(ptr, offset, min_load_factor_); offset = WriteToBytes(ptr, offset, max_load_factor_); // Write elements, not that this may not be safe for cross compilation if the elements are // pointer sized. for (size_t i = 0; i < num_buckets_; ++i) { offset = WriteToBytes(ptr, offset, data_[i]); } // Caller responsible for aligning. return offset; } ~HashSet() { DeallocateStorage(); } HashSet& operator=(HashSet&& other) { std::swap(data_, other.data_); std::swap(num_buckets_, other.num_buckets_); std::swap(num_elements_, other.num_elements_); std::swap(elements_until_expand_, other.elements_until_expand_); std::swap(min_load_factor_, other.min_load_factor_); std::swap(max_load_factor_, other.max_load_factor_); std::swap(owns_data_, other.owns_data_); return *this; } HashSet& operator=(const HashSet& other) { DeallocateStorage(); AllocateStorage(other.NumBuckets()); for (size_t i = 0; i < num_buckets_; ++i) { ElementForIndex(i) = other.data_[i]; } num_elements_ = other.num_elements_; elements_until_expand_ = other.elements_until_expand_; min_load_factor_ = other.min_load_factor_; max_load_factor_ = other.max_load_factor_; return *this; } // Lower case for c++11 for each. Iterator begin() { Iterator ret(this, 0); if (num_buckets_ != 0 && IsFreeSlot(ret.index_)) { ++ret; // Skip all the empty slots. } return ret; } // Lower case for c++11 for each. Iterator end() { return Iterator(this, NumBuckets()); } bool Empty() { return Size() == 0; } // Erase algorithm: // Make an empty slot where the iterator is pointing. // Scan fowards until we hit another empty slot. // If an element inbetween doesn't rehash to the range from the current empty slot to the // iterator. It must be before the empty slot, in that case we can move it to the empty slot // and set the empty slot to be the location we just moved from. // Relies on maintaining the invariant that there's no empty slots from the 'ideal' index of an // element to its actual location/index. Iterator Erase(Iterator it) { // empty_index is the index that will become empty. size_t empty_index = it.index_; DCHECK(!IsFreeSlot(empty_index)); size_t next_index = empty_index; bool filled = false; // True if we filled the empty index. while (true) { next_index = NextIndex(next_index); T& next_element = ElementForIndex(next_index); // If the next element is empty, we are done. Make sure to clear the current empty index. if (emptyfn_.IsEmpty(next_element)) { emptyfn_.MakeEmpty(ElementForIndex(empty_index)); break; } // Otherwise try to see if the next element can fill the current empty index. const size_t next_hash = hashfn_(next_element); // Calculate the ideal index, if it is within empty_index + 1 to next_index then there is // nothing we can do. size_t next_ideal_index = IndexForHash(next_hash); // Loop around if needed for our check. size_t unwrapped_next_index = next_index; if (unwrapped_next_index < empty_index) { unwrapped_next_index += NumBuckets(); } // Loop around if needed for our check. size_t unwrapped_next_ideal_index = next_ideal_index; if (unwrapped_next_ideal_index < empty_index) { unwrapped_next_ideal_index += NumBuckets(); } if (unwrapped_next_ideal_index <= empty_index || unwrapped_next_ideal_index > unwrapped_next_index) { // If the target index isn't within our current range it must have been probed from before // the empty index. ElementForIndex(empty_index) = std::move(next_element); filled = true; // TODO: Optimize empty_index = next_index; } } --num_elements_; // If we didn't fill the slot then we need go to the next non free slot. if (!filled) { ++it; } return it; } // Find an element, returns end() if not found. // Allows custom key (K) types, example of when this is useful: // Set of Class* sorted by name, want to find a class with a name but can't allocate a dummy // object in the heap for performance solution. template <typename K> Iterator Find(const K& element) { return FindWithHash(element, hashfn_(element)); } template <typename K> ConstIterator Find(const K& element) const { return FindWithHash(element, hashfn_(element)); } template <typename K> Iterator FindWithHash(const K& element, size_t hash) { return Iterator(this, FindIndex(element, hash)); } template <typename K> ConstIterator FindWithHash(const K& element, size_t hash) const { return ConstIterator(this, FindIndex(element, hash)); } // Insert an element, allows duplicates. void Insert(const T& element) { InsertWithHash(element, hashfn_(element)); } void InsertWithHash(const T& element, size_t hash) { DCHECK_EQ(hash, hashfn_(element)); if (num_elements_ >= elements_until_expand_) { Expand(); DCHECK_LT(num_elements_, elements_until_expand_); } const size_t index = FirstAvailableSlot(IndexForHash(hash)); data_[index] = element; ++num_elements_; } size_t Size() const { return num_elements_; } void ShrinkToMaximumLoad() { Resize(Size() / max_load_factor_); } // To distance that inserted elements were probed. Used for measuring how good hash functions // are. size_t TotalProbeDistance() const { size_t total = 0; for (size_t i = 0; i < NumBuckets(); ++i) { const T& element = ElementForIndex(i); if (!emptyfn_.IsEmpty(element)) { size_t ideal_location = IndexForHash(hashfn_(element)); if (ideal_location > i) { total += i + NumBuckets() - ideal_location; } else { total += i - ideal_location; } } } return total; } // Calculate the current load factor and return it. double CalculateLoadFactor() const { return static_cast<double>(Size()) / static_cast<double>(NumBuckets()); } // Make sure that everything reinserts in the right spot. Returns the number of errors. size_t Verify() { size_t errors = 0; for (size_t i = 0; i < num_buckets_; ++i) { T& element = data_[i]; if (!emptyfn_.IsEmpty(element)) { T temp; emptyfn_.MakeEmpty(temp); std::swap(temp, element); size_t first_slot = FirstAvailableSlot(IndexForHash(hashfn_(temp))); if (i != first_slot) { LOG(ERROR) << "Element " << i << " should be in slot " << first_slot; ++errors; } std::swap(temp, element); } } return errors; } private: T& ElementForIndex(size_t index) { DCHECK_LT(index, NumBuckets()); DCHECK(data_ != nullptr); return data_[index]; } const T& ElementForIndex(size_t index) const { DCHECK_LT(index, NumBuckets()); DCHECK(data_ != nullptr); return data_[index]; } size_t IndexForHash(size_t hash) const { return hash % num_buckets_; } size_t NextIndex(size_t index) const { if (UNLIKELY(++index >= num_buckets_)) { DCHECK_EQ(index, NumBuckets()); return 0; } return index; } // Find the hash table slot for an element, or return NumBuckets() if not found. // This value for not found is important so that Iterator(this, FindIndex(...)) == end(). template <typename K> size_t FindIndex(const K& element, size_t hash) const { DCHECK_EQ(hashfn_(element), hash); size_t index = IndexForHash(hash); while (true) { const T& slot = ElementForIndex(index); if (emptyfn_.IsEmpty(slot)) { return NumBuckets(); } if (pred_(slot, element)) { return index; } index = NextIndex(index); } } bool IsFreeSlot(size_t index) const { return emptyfn_.IsEmpty(ElementForIndex(index)); } size_t NumBuckets() const { return num_buckets_; } // Allocate a number of buckets. void AllocateStorage(size_t num_buckets) { num_buckets_ = num_buckets; data_ = allocfn_.allocate(num_buckets_); owns_data_ = true; for (size_t i = 0; i < num_buckets_; ++i) { allocfn_.construct(allocfn_.address(data_[i])); emptyfn_.MakeEmpty(data_[i]); } } void DeallocateStorage() { if (num_buckets_ != 0) { if (owns_data_) { for (size_t i = 0; i < NumBuckets(); ++i) { allocfn_.destroy(allocfn_.address(data_[i])); } allocfn_.deallocate(data_, NumBuckets()); owns_data_ = false; } data_ = nullptr; num_buckets_ = 0; } } // Expand the set based on the load factors. void Expand() { size_t min_index = static_cast<size_t>(Size() / min_load_factor_); if (min_index < kMinBuckets) { min_index = kMinBuckets; } // Resize based on the minimum load factor. Resize(min_index); // When we hit elements_until_expand_, we are at the max load factor and must expand again. elements_until_expand_ = NumBuckets() * max_load_factor_; } // Expand / shrink the table to the new specified size. void Resize(size_t new_size) { DCHECK_GE(new_size, Size()); T* const old_data = data_; size_t old_num_buckets = num_buckets_; // Reinsert all of the old elements. const bool owned_data = owns_data_; AllocateStorage(new_size); for (size_t i = 0; i < old_num_buckets; ++i) { T& element = old_data[i]; if (!emptyfn_.IsEmpty(element)) { data_[FirstAvailableSlot(IndexForHash(hashfn_(element)))] = std::move(element); } if (owned_data) { allocfn_.destroy(allocfn_.address(element)); } } if (owned_data) { allocfn_.deallocate(old_data, old_num_buckets); } } ALWAYS_INLINE size_t FirstAvailableSlot(size_t index) const { while (!emptyfn_.IsEmpty(data_[index])) { index = NextIndex(index); } return index; } // Return new offset. template <typename Elem> static size_t WriteToBytes(uint8_t* ptr, size_t offset, Elem n) { DCHECK_ALIGNED(ptr + offset, sizeof(n)); if (ptr != nullptr) { *reinterpret_cast<Elem*>(ptr + offset) = n; } return offset + sizeof(n); } template <typename Elem> static size_t ReadFromBytes(const uint8_t* ptr, size_t offset, Elem* out) { DCHECK(ptr != nullptr); DCHECK_ALIGNED(ptr + offset, sizeof(*out)); *out = *reinterpret_cast<const Elem*>(ptr + offset); return offset + sizeof(*out); } Alloc allocfn_; // Allocator function. HashFn hashfn_; // Hashing function. EmptyFn emptyfn_; // IsEmpty/SetEmpty function. Pred pred_; // Equals function. size_t num_elements_; // Number of inserted elements. size_t num_buckets_; // Number of hash table buckets. size_t elements_until_expand_; // Maxmimum number of elements until we expand the table. bool owns_data_; // If we own data_ and are responsible for freeing it. T* data_; // Backing storage. double min_load_factor_; double max_load_factor_; }; } // namespace art #endif // ART_RUNTIME_BASE_HASH_SET_H_