/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_MIRROR_CLASS_INL_H_ #define ART_RUNTIME_MIRROR_CLASS_INL_H_ #include "class.h" #include "art_field-inl.h" #include "art_method.h" #include "art_method-inl.h" #include "class_loader.h" #include "common_throws.h" #include "dex_cache.h" #include "dex_file.h" #include "gc/heap-inl.h" #include "iftable.h" #include "object_array-inl.h" #include "read_barrier-inl.h" #include "reference-inl.h" #include "runtime.h" #include "string.h" #include "utils.h" namespace art { namespace mirror { template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline uint32_t Class::GetObjectSize() { // Note: Extra parentheses to avoid the comma being interpreted as macro parameter separator. DCHECK((!IsVariableSize<kVerifyFlags, kReadBarrierOption>())) << " class=" << PrettyTypeOf(this); return GetField32(ObjectSizeOffset()); } inline Class* Class::GetSuperClass() { // Can only get super class for loaded classes (hack for when runtime is // initializing) DCHECK(IsLoaded() || IsErroneous() || !Runtime::Current()->IsStarted()) << IsLoaded(); return GetFieldObject<Class>(OFFSET_OF_OBJECT_MEMBER(Class, super_class_)); } inline ClassLoader* Class::GetClassLoader() { return GetFieldObject<ClassLoader>(OFFSET_OF_OBJECT_MEMBER(Class, class_loader_)); } template<VerifyObjectFlags kVerifyFlags> inline DexCache* Class::GetDexCache() { return GetFieldObject<DexCache, kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, dex_cache_)); } inline ArtMethod* Class::GetDirectMethodsPtr() { DCHECK(IsLoaded() || IsErroneous()); return GetDirectMethodsPtrUnchecked(); } inline ArtMethod* Class::GetDirectMethodsPtrUnchecked() { return reinterpret_cast<ArtMethod*>(GetField64(OFFSET_OF_OBJECT_MEMBER(Class, direct_methods_))); } inline ArtMethod* Class::GetVirtualMethodsPtrUnchecked() { return reinterpret_cast<ArtMethod*>(GetField64(OFFSET_OF_OBJECT_MEMBER(Class, virtual_methods_))); } inline void Class::SetDirectMethodsPtr(ArtMethod* new_direct_methods) { DCHECK(GetDirectMethodsPtrUnchecked() == nullptr); SetDirectMethodsPtrUnchecked(new_direct_methods); } inline void Class::SetDirectMethodsPtrUnchecked(ArtMethod* new_direct_methods) { SetField64<false>(OFFSET_OF_OBJECT_MEMBER(Class, direct_methods_), reinterpret_cast<uint64_t>(new_direct_methods)); } inline ArtMethod* Class::GetDirectMethodUnchecked(size_t i, size_t pointer_size) { CheckPointerSize(pointer_size); auto* methods = GetDirectMethodsPtrUnchecked(); DCHECK(methods != nullptr); return reinterpret_cast<ArtMethod*>(reinterpret_cast<uintptr_t>(methods) + ArtMethod::ObjectSize(pointer_size) * i); } inline ArtMethod* Class::GetDirectMethod(size_t i, size_t pointer_size) { CheckPointerSize(pointer_size); auto* methods = GetDirectMethodsPtr(); DCHECK(methods != nullptr); return reinterpret_cast<ArtMethod*>(reinterpret_cast<uintptr_t>(methods) + ArtMethod::ObjectSize(pointer_size) * i); } template<VerifyObjectFlags kVerifyFlags> inline ArtMethod* Class::GetVirtualMethodsPtr() { DCHECK(IsLoaded<kVerifyFlags>() || IsErroneous<kVerifyFlags>()); return GetVirtualMethodsPtrUnchecked(); } inline void Class::SetVirtualMethodsPtr(ArtMethod* new_virtual_methods) { // TODO: we reassign virtual methods to grow the table for miranda // methods.. they should really just be assigned once. SetField64<false>(OFFSET_OF_OBJECT_MEMBER(Class, virtual_methods_), reinterpret_cast<uint64_t>(new_virtual_methods)); } template<VerifyObjectFlags kVerifyFlags> inline ArtMethod* Class::GetVirtualMethod(size_t i, size_t pointer_size) { CheckPointerSize(pointer_size); DCHECK(IsResolved<kVerifyFlags>() || IsErroneous<kVerifyFlags>()) << PrettyClass(this) << " status=" << GetStatus(); return GetVirtualMethodUnchecked(i, pointer_size); } inline ArtMethod* Class::GetVirtualMethodDuringLinking(size_t i, size_t pointer_size) { CheckPointerSize(pointer_size); DCHECK(IsLoaded() || IsErroneous()); return GetVirtualMethodUnchecked(i, pointer_size); } inline ArtMethod* Class::GetVirtualMethodUnchecked(size_t i, size_t pointer_size) { CheckPointerSize(pointer_size); auto* methods = GetVirtualMethodsPtrUnchecked(); DCHECK(methods != nullptr); return reinterpret_cast<ArtMethod*>(reinterpret_cast<uintptr_t>(methods) + ArtMethod::ObjectSize(pointer_size) * i); } inline PointerArray* Class::GetVTable() { DCHECK(IsResolved() || IsErroneous()); return GetFieldObject<PointerArray>(OFFSET_OF_OBJECT_MEMBER(Class, vtable_)); } inline PointerArray* Class::GetVTableDuringLinking() { DCHECK(IsLoaded() || IsErroneous()); return GetFieldObject<PointerArray>(OFFSET_OF_OBJECT_MEMBER(Class, vtable_)); } inline void Class::SetVTable(PointerArray* new_vtable) { SetFieldObject<false>(OFFSET_OF_OBJECT_MEMBER(Class, vtable_), new_vtable); } inline MemberOffset Class::EmbeddedImTableEntryOffset(uint32_t i, size_t pointer_size) { DCHECK_LT(i, kImtSize); return MemberOffset( EmbeddedImTableOffset(pointer_size).Uint32Value() + i * ImTableEntrySize(pointer_size)); } inline ArtMethod* Class::GetEmbeddedImTableEntry(uint32_t i, size_t pointer_size) { DCHECK(ShouldHaveEmbeddedImtAndVTable()); return GetFieldPtrWithSize<ArtMethod*>( EmbeddedImTableEntryOffset(i, pointer_size), pointer_size); } inline void Class::SetEmbeddedImTableEntry(uint32_t i, ArtMethod* method, size_t pointer_size) { DCHECK(ShouldHaveEmbeddedImtAndVTable()); SetFieldPtrWithSize<false>(EmbeddedImTableEntryOffset(i, pointer_size), method, pointer_size); } inline bool Class::HasVTable() { return GetVTable() != nullptr || ShouldHaveEmbeddedImtAndVTable(); } inline int32_t Class::GetVTableLength() { if (ShouldHaveEmbeddedImtAndVTable()) { return GetEmbeddedVTableLength(); } return GetVTable() != nullptr ? GetVTable()->GetLength() : 0; } inline ArtMethod* Class::GetVTableEntry(uint32_t i, size_t pointer_size) { if (ShouldHaveEmbeddedImtAndVTable()) { return GetEmbeddedVTableEntry(i, pointer_size); } auto* vtable = GetVTable(); DCHECK(vtable != nullptr); return vtable->GetElementPtrSize<ArtMethod*>(i, pointer_size); } inline int32_t Class::GetEmbeddedVTableLength() { return GetField32(MemberOffset(EmbeddedVTableLengthOffset())); } inline void Class::SetEmbeddedVTableLength(int32_t len) { SetField32<false>(MemberOffset(EmbeddedVTableLengthOffset()), len); } inline MemberOffset Class::EmbeddedVTableEntryOffset(uint32_t i, size_t pointer_size) { return MemberOffset( EmbeddedVTableOffset(pointer_size).Uint32Value() + i * VTableEntrySize(pointer_size)); } inline ArtMethod* Class::GetEmbeddedVTableEntry(uint32_t i, size_t pointer_size) { return GetFieldPtrWithSize<ArtMethod*>(EmbeddedVTableEntryOffset(i, pointer_size), pointer_size); } inline void Class::SetEmbeddedVTableEntryUnchecked( uint32_t i, ArtMethod* method, size_t pointer_size) { SetFieldPtrWithSize<false>(EmbeddedVTableEntryOffset(i, pointer_size), method, pointer_size); } inline void Class::SetEmbeddedVTableEntry(uint32_t i, ArtMethod* method, size_t pointer_size) { auto* vtable = GetVTableDuringLinking(); CHECK_EQ(method, vtable->GetElementPtrSize<ArtMethod*>(i, pointer_size)); SetEmbeddedVTableEntryUnchecked(i, method, pointer_size); } inline bool Class::Implements(Class* klass) { DCHECK(klass != nullptr); DCHECK(klass->IsInterface()) << PrettyClass(this); // All interfaces implemented directly and by our superclass, and // recursively all super-interfaces of those interfaces, are listed // in iftable_, so we can just do a linear scan through that. int32_t iftable_count = GetIfTableCount(); IfTable* iftable = GetIfTable(); for (int32_t i = 0; i < iftable_count; i++) { if (iftable->GetInterface(i) == klass) { return true; } } return false; } // Determine whether "this" is assignable from "src", where both of these // are array classes. // // Consider an array class, e.g. Y[][], where Y is a subclass of X. // Y[][] = Y[][] --> true (identity) // X[][] = Y[][] --> true (element superclass) // Y = Y[][] --> false // Y[] = Y[][] --> false // Object = Y[][] --> true (everything is an object) // Object[] = Y[][] --> true // Object[][] = Y[][] --> true // Object[][][] = Y[][] --> false (too many []s) // Serializable = Y[][] --> true (all arrays are Serializable) // Serializable[] = Y[][] --> true // Serializable[][] = Y[][] --> false (unless Y is Serializable) // // Don't forget about primitive types. // Object[] = int[] --> false // inline bool Class::IsArrayAssignableFromArray(Class* src) { DCHECK(IsArrayClass()) << PrettyClass(this); DCHECK(src->IsArrayClass()) << PrettyClass(src); return GetComponentType()->IsAssignableFrom(src->GetComponentType()); } inline bool Class::IsAssignableFromArray(Class* src) { DCHECK(!IsInterface()) << PrettyClass(this); // handled first in IsAssignableFrom DCHECK(src->IsArrayClass()) << PrettyClass(src); if (!IsArrayClass()) { // If "this" is not also an array, it must be Object. // src's super should be java_lang_Object, since it is an array. Class* java_lang_Object = src->GetSuperClass(); DCHECK(java_lang_Object != nullptr) << PrettyClass(src); DCHECK(java_lang_Object->GetSuperClass() == nullptr) << PrettyClass(src); return this == java_lang_Object; } return IsArrayAssignableFromArray(src); } template <bool throw_on_failure, bool use_referrers_cache> inline bool Class::ResolvedFieldAccessTest(Class* access_to, ArtField* field, uint32_t field_idx, DexCache* dex_cache) { DCHECK_EQ(use_referrers_cache, dex_cache == nullptr); if (UNLIKELY(!this->CanAccess(access_to))) { // The referrer class can't access the field's declaring class but may still be able // to access the field if the FieldId specifies an accessible subclass of the declaring // class rather than the declaring class itself. DexCache* referrer_dex_cache = use_referrers_cache ? this->GetDexCache() : dex_cache; uint32_t class_idx = referrer_dex_cache->GetDexFile()->GetFieldId(field_idx).class_idx_; // The referenced class has already been resolved with the field, get it from the dex cache. Class* dex_access_to = referrer_dex_cache->GetResolvedType(class_idx); DCHECK(dex_access_to != nullptr); if (UNLIKELY(!this->CanAccess(dex_access_to))) { if (throw_on_failure) { ThrowIllegalAccessErrorClass(this, dex_access_to); } return false; } DCHECK_EQ(this->CanAccessMember(access_to, field->GetAccessFlags()), this->CanAccessMember(dex_access_to, field->GetAccessFlags())); } if (LIKELY(this->CanAccessMember(access_to, field->GetAccessFlags()))) { return true; } if (throw_on_failure) { ThrowIllegalAccessErrorField(this, field); } return false; } template <bool throw_on_failure, bool use_referrers_cache, InvokeType throw_invoke_type> inline bool Class::ResolvedMethodAccessTest(Class* access_to, ArtMethod* method, uint32_t method_idx, DexCache* dex_cache) { static_assert(throw_on_failure || throw_invoke_type == kStatic, "Non-default throw invoke type"); DCHECK_EQ(use_referrers_cache, dex_cache == nullptr); if (UNLIKELY(!this->CanAccess(access_to))) { // The referrer class can't access the method's declaring class but may still be able // to access the method if the MethodId specifies an accessible subclass of the declaring // class rather than the declaring class itself. DexCache* referrer_dex_cache = use_referrers_cache ? this->GetDexCache() : dex_cache; uint32_t class_idx = referrer_dex_cache->GetDexFile()->GetMethodId(method_idx).class_idx_; // The referenced class has already been resolved with the method, get it from the dex cache. Class* dex_access_to = referrer_dex_cache->GetResolvedType(class_idx); DCHECK(dex_access_to != nullptr); if (UNLIKELY(!this->CanAccess(dex_access_to))) { if (throw_on_failure) { ThrowIllegalAccessErrorClassForMethodDispatch(this, dex_access_to, method, throw_invoke_type); } return false; } DCHECK_EQ(this->CanAccessMember(access_to, method->GetAccessFlags()), this->CanAccessMember(dex_access_to, method->GetAccessFlags())); } if (LIKELY(this->CanAccessMember(access_to, method->GetAccessFlags()))) { return true; } if (throw_on_failure) { ThrowIllegalAccessErrorMethod(this, method); } return false; } inline bool Class::CanAccessResolvedField(Class* access_to, ArtField* field, DexCache* dex_cache, uint32_t field_idx) { return ResolvedFieldAccessTest<false, false>(access_to, field, field_idx, dex_cache); } inline bool Class::CheckResolvedFieldAccess(Class* access_to, ArtField* field, uint32_t field_idx) { return ResolvedFieldAccessTest<true, true>(access_to, field, field_idx, nullptr); } inline bool Class::CanAccessResolvedMethod(Class* access_to, ArtMethod* method, DexCache* dex_cache, uint32_t method_idx) { return ResolvedMethodAccessTest<false, false, kStatic>(access_to, method, method_idx, dex_cache); } template <InvokeType throw_invoke_type> inline bool Class::CheckResolvedMethodAccess(Class* access_to, ArtMethod* method, uint32_t method_idx) { return ResolvedMethodAccessTest<true, true, throw_invoke_type>(access_to, method, method_idx, nullptr); } inline bool Class::IsSubClass(Class* klass) { DCHECK(!IsInterface()) << PrettyClass(this); DCHECK(!IsArrayClass()) << PrettyClass(this); Class* current = this; do { if (current == klass) { return true; } current = current->GetSuperClass(); } while (current != nullptr); return false; } inline ArtMethod* Class::FindVirtualMethodForInterface(ArtMethod* method, size_t pointer_size) { Class* declaring_class = method->GetDeclaringClass(); DCHECK(declaring_class != nullptr) << PrettyClass(this); DCHECK(declaring_class->IsInterface()) << PrettyMethod(method); // TODO cache to improve lookup speed const int32_t iftable_count = GetIfTableCount(); IfTable* iftable = GetIfTable(); for (int32_t i = 0; i < iftable_count; i++) { if (iftable->GetInterface(i) == declaring_class) { return iftable->GetMethodArray(i)->GetElementPtrSize<ArtMethod*>( method->GetMethodIndex(), pointer_size); } } return nullptr; } inline ArtMethod* Class::FindVirtualMethodForVirtual(ArtMethod* method, size_t pointer_size) { DCHECK(!method->GetDeclaringClass()->IsInterface() || method->IsMiranda()); // The argument method may from a super class. // Use the index to a potentially overridden one for this instance's class. return GetVTableEntry(method->GetMethodIndex(), pointer_size); } inline ArtMethod* Class::FindVirtualMethodForSuper(ArtMethod* method, size_t pointer_size) { DCHECK(!method->GetDeclaringClass()->IsInterface()); return GetSuperClass()->GetVTableEntry(method->GetMethodIndex(), pointer_size); } inline ArtMethod* Class::FindVirtualMethodForVirtualOrInterface(ArtMethod* method, size_t pointer_size) { if (method->IsDirect()) { return method; } if (method->GetDeclaringClass()->IsInterface() && !method->IsMiranda()) { return FindVirtualMethodForInterface(method, pointer_size); } return FindVirtualMethodForVirtual(method, pointer_size); } inline IfTable* Class::GetIfTable() { return GetFieldObject<IfTable>(OFFSET_OF_OBJECT_MEMBER(Class, iftable_)); } inline int32_t Class::GetIfTableCount() { IfTable* iftable = GetIfTable(); if (iftable == nullptr) { return 0; } return iftable->Count(); } inline void Class::SetIfTable(IfTable* new_iftable) { SetFieldObject<false>(OFFSET_OF_OBJECT_MEMBER(Class, iftable_), new_iftable); } inline ArtField* Class::GetIFields() { DCHECK(IsLoaded() || IsErroneous()); return GetFieldPtr<ArtField*>(OFFSET_OF_OBJECT_MEMBER(Class, ifields_)); } inline MemberOffset Class::GetFirstReferenceInstanceFieldOffset() { Class* super_class = GetSuperClass(); return (super_class != nullptr) ? MemberOffset(RoundUp(super_class->GetObjectSize(), sizeof(mirror::HeapReference<mirror::Object>))) : ClassOffset(); } inline MemberOffset Class::GetFirstReferenceStaticFieldOffset(size_t pointer_size) { DCHECK(IsResolved()); uint32_t base = sizeof(mirror::Class); // Static fields come after the class. if (ShouldHaveEmbeddedImtAndVTable()) { // Static fields come after the embedded tables. base = mirror::Class::ComputeClassSize( true, GetEmbeddedVTableLength(), 0, 0, 0, 0, 0, pointer_size); } return MemberOffset(base); } inline MemberOffset Class::GetFirstReferenceStaticFieldOffsetDuringLinking(size_t pointer_size) { DCHECK(IsLoaded()); uint32_t base = sizeof(mirror::Class); // Static fields come after the class. if (ShouldHaveEmbeddedImtAndVTable()) { // Static fields come after the embedded tables. base = mirror::Class::ComputeClassSize(true, GetVTableDuringLinking()->GetLength(), 0, 0, 0, 0, 0, pointer_size); } return MemberOffset(base); } inline void Class::SetIFields(ArtField* new_ifields) { DCHECK(GetIFieldsUnchecked() == nullptr); return SetFieldPtr<false>(OFFSET_OF_OBJECT_MEMBER(Class, ifields_), new_ifields); } inline void Class::SetIFieldsUnchecked(ArtField* new_ifields) { SetFieldPtr<false, true, kVerifyNone>(OFFSET_OF_OBJECT_MEMBER(Class, ifields_), new_ifields); } inline ArtField* Class::GetSFieldsUnchecked() { return GetFieldPtr<ArtField*>(OFFSET_OF_OBJECT_MEMBER(Class, sfields_)); } inline ArtField* Class::GetIFieldsUnchecked() { return GetFieldPtr<ArtField*>(OFFSET_OF_OBJECT_MEMBER(Class, ifields_)); } inline ArtField* Class::GetSFields() { DCHECK(IsLoaded() || IsErroneous()) << GetStatus(); return GetSFieldsUnchecked(); } inline void Class::SetSFields(ArtField* new_sfields) { DCHECK((IsRetired() && new_sfields == nullptr) || GetFieldPtr<ArtField*>(OFFSET_OF_OBJECT_MEMBER(Class, sfields_)) == nullptr); SetFieldPtr<false>(OFFSET_OF_OBJECT_MEMBER(Class, sfields_), new_sfields); } inline void Class::SetSFieldsUnchecked(ArtField* new_sfields) { SetFieldPtr<false, true, kVerifyNone>(OFFSET_OF_OBJECT_MEMBER(Class, sfields_), new_sfields); } inline ArtField* Class::GetStaticField(uint32_t i) { DCHECK_LT(i, NumStaticFields()); return &GetSFields()[i]; } inline ArtField* Class::GetInstanceField(uint32_t i) { DCHECK_LT(i, NumInstanceFields()); return &GetIFields()[i]; } template<VerifyObjectFlags kVerifyFlags> inline uint32_t Class::GetReferenceInstanceOffsets() { DCHECK(IsResolved<kVerifyFlags>() || IsErroneous<kVerifyFlags>()); return GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, reference_instance_offsets_)); } inline void Class::SetClinitThreadId(pid_t new_clinit_thread_id) { if (Runtime::Current()->IsActiveTransaction()) { SetField32<true>(OFFSET_OF_OBJECT_MEMBER(Class, clinit_thread_id_), new_clinit_thread_id); } else { SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, clinit_thread_id_), new_clinit_thread_id); } } inline void Class::SetVerifyErrorClass(Class* klass) { CHECK(klass != nullptr) << PrettyClass(this); if (Runtime::Current()->IsActiveTransaction()) { SetFieldObject<true>(OFFSET_OF_OBJECT_MEMBER(Class, verify_error_class_), klass); } else { SetFieldObject<false>(OFFSET_OF_OBJECT_MEMBER(Class, verify_error_class_), klass); } } template<VerifyObjectFlags kVerifyFlags> inline uint32_t Class::GetAccessFlags() { // Check class is loaded/retired or this is java.lang.String that has a // circularity issue during loading the names of its members DCHECK(IsIdxLoaded<kVerifyFlags>() || IsRetired<kVerifyFlags>() || IsErroneous<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>() || this == String::GetJavaLangString()) << "IsIdxLoaded=" << IsIdxLoaded<kVerifyFlags>() << " IsRetired=" << IsRetired<kVerifyFlags>() << " IsErroneous=" << IsErroneous<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>() << " IsString=" << (this == String::GetJavaLangString()) << " descriptor=" << PrettyDescriptor(this); return GetField32<kVerifyFlags>(AccessFlagsOffset()); } inline String* Class::GetName() { return GetFieldObject<String>(OFFSET_OF_OBJECT_MEMBER(Class, name_)); } inline void Class::SetName(String* name) { if (Runtime::Current()->IsActiveTransaction()) { SetFieldObject<true>(OFFSET_OF_OBJECT_MEMBER(Class, name_), name); } else { SetFieldObject<false>(OFFSET_OF_OBJECT_MEMBER(Class, name_), name); } } template<VerifyObjectFlags kVerifyFlags> inline Primitive::Type Class::GetPrimitiveType() { DCHECK_EQ(sizeof(Primitive::Type), sizeof(int32_t)); int32_t v32 = GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, primitive_type_)); Primitive::Type type = static_cast<Primitive::Type>(v32 & 0xFFFF); DCHECK_EQ(static_cast<size_t>(v32 >> 16), Primitive::ComponentSizeShift(type)); return type; } template<VerifyObjectFlags kVerifyFlags> inline size_t Class::GetPrimitiveTypeSizeShift() { DCHECK_EQ(sizeof(Primitive::Type), sizeof(int32_t)); int32_t v32 = GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, primitive_type_)); size_t size_shift = static_cast<Primitive::Type>(v32 >> 16); DCHECK_EQ(size_shift, Primitive::ComponentSizeShift(static_cast<Primitive::Type>(v32 & 0xFFFF))); return size_shift; } inline void Class::CheckObjectAlloc() { DCHECK(!IsArrayClass()) << PrettyClass(this) << "A array shouldn't be allocated through this " << "as it requires a pre-fence visitor that sets the class size."; DCHECK(!IsClassClass()) << PrettyClass(this) << "A class object shouldn't be allocated through this " << "as it requires a pre-fence visitor that sets the class size."; DCHECK(!IsStringClass()) << PrettyClass(this) << "A string shouldn't be allocated through this " << "as it requires a pre-fence visitor that sets the class size."; DCHECK(IsInstantiable()) << PrettyClass(this); // TODO: decide whether we want this check. It currently fails during bootstrap. // DCHECK(!Runtime::Current()->IsStarted() || IsInitializing()) << PrettyClass(this); DCHECK_GE(this->object_size_, sizeof(Object)); } template<bool kIsInstrumented, bool kCheckAddFinalizer> inline Object* Class::Alloc(Thread* self, gc::AllocatorType allocator_type) { CheckObjectAlloc(); gc::Heap* heap = Runtime::Current()->GetHeap(); const bool add_finalizer = kCheckAddFinalizer && IsFinalizable(); if (!kCheckAddFinalizer) { DCHECK(!IsFinalizable()); } mirror::Object* obj = heap->AllocObjectWithAllocator<kIsInstrumented, false>(self, this, this->object_size_, allocator_type, VoidFunctor()); if (add_finalizer && LIKELY(obj != nullptr)) { heap->AddFinalizerReference(self, &obj); if (UNLIKELY(self->IsExceptionPending())) { // Failed to allocate finalizer reference, it means that the whole allocation failed. obj = nullptr; } } return obj; } inline Object* Class::AllocObject(Thread* self) { return Alloc<true>(self, Runtime::Current()->GetHeap()->GetCurrentAllocator()); } inline Object* Class::AllocNonMovableObject(Thread* self) { return Alloc<true>(self, Runtime::Current()->GetHeap()->GetCurrentNonMovingAllocator()); } inline uint32_t Class::ComputeClassSize(bool has_embedded_tables, uint32_t num_vtable_entries, uint32_t num_8bit_static_fields, uint32_t num_16bit_static_fields, uint32_t num_32bit_static_fields, uint32_t num_64bit_static_fields, uint32_t num_ref_static_fields, size_t pointer_size) { // Space used by java.lang.Class and its instance fields. uint32_t size = sizeof(Class); // Space used by embedded tables. if (has_embedded_tables) { const uint32_t embedded_imt_size = kImtSize * ImTableEntrySize(pointer_size); const uint32_t embedded_vtable_size = num_vtable_entries * VTableEntrySize(pointer_size); size = RoundUp(size + sizeof(uint32_t) /* embedded vtable len */, pointer_size) + embedded_imt_size + embedded_vtable_size; } // Space used by reference statics. size += num_ref_static_fields * sizeof(HeapReference<Object>); if (!IsAligned<8>(size) && num_64bit_static_fields > 0) { uint32_t gap = 8 - (size & 0x7); size += gap; // will be padded // Shuffle 4-byte fields forward. while (gap >= sizeof(uint32_t) && num_32bit_static_fields != 0) { --num_32bit_static_fields; gap -= sizeof(uint32_t); } // Shuffle 2-byte fields forward. while (gap >= sizeof(uint16_t) && num_16bit_static_fields != 0) { --num_16bit_static_fields; gap -= sizeof(uint16_t); } // Shuffle byte fields forward. while (gap >= sizeof(uint8_t) && num_8bit_static_fields != 0) { --num_8bit_static_fields; gap -= sizeof(uint8_t); } } // Guaranteed to be at least 4 byte aligned. No need for further alignments. // Space used for primitive static fields. size += num_8bit_static_fields * sizeof(uint8_t) + num_16bit_static_fields * sizeof(uint16_t) + num_32bit_static_fields * sizeof(uint32_t) + num_64bit_static_fields * sizeof(uint64_t); return size; } template <bool kVisitClass, typename Visitor> inline void Class::VisitReferences(mirror::Class* klass, const Visitor& visitor) { VisitInstanceFieldsReferences<kVisitClass>(klass, visitor); // Right after a class is allocated, but not yet loaded // (kStatusNotReady, see ClassLinkder::LoadClass()), GC may find it // and scan it. IsTemp() may call Class::GetAccessFlags() but may // fail in the DCHECK in Class::GetAccessFlags() because the class // status is kStatusNotReady. To avoid it, rely on IsResolved() // only. This is fine because a temp class never goes into the // kStatusResolved state. if (IsResolved()) { // Temp classes don't ever populate imt/vtable or static fields and they are not even // allocated with the right size for those. Also, unresolved classes don't have fields // linked yet. VisitStaticFieldsReferences<kVisitClass>(this, visitor); } } template<ReadBarrierOption kReadBarrierOption> inline bool Class::IsReferenceClass() const { return this == Reference::GetJavaLangRefReference<kReadBarrierOption>(); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline bool Class::IsClassClass() { Class* java_lang_Class = GetClass<kVerifyFlags, kReadBarrierOption>()-> template GetClass<kVerifyFlags, kReadBarrierOption>(); return this == java_lang_Class; } inline const DexFile& Class::GetDexFile() { return *GetDexCache()->GetDexFile(); } inline bool Class::DescriptorEquals(const char* match) { if (IsArrayClass()) { return match[0] == '[' && GetComponentType()->DescriptorEquals(match + 1); } else if (IsPrimitive()) { return strcmp(Primitive::Descriptor(GetPrimitiveType()), match) == 0; } else if (IsProxyClass()) { return ProxyDescriptorEquals(match); } else { const DexFile& dex_file = GetDexFile(); const DexFile::TypeId& type_id = dex_file.GetTypeId(GetClassDef()->class_idx_); return strcmp(dex_file.GetTypeDescriptor(type_id), match) == 0; } } inline void Class::AssertInitializedOrInitializingInThread(Thread* self) { if (kIsDebugBuild && !IsInitialized()) { CHECK(IsInitializing()) << PrettyClass(this) << " is not initializing: " << GetStatus(); CHECK_EQ(GetClinitThreadId(), self->GetTid()) << PrettyClass(this) << " is initializing in a different thread"; } } inline ObjectArray<Class>* Class::GetInterfaces() { CHECK(IsProxyClass()); // First static field. auto* field = GetStaticField(0); DCHECK_STREQ(field->GetName(), "interfaces"); MemberOffset field_offset = field->GetOffset(); return GetFieldObject<ObjectArray<Class>>(field_offset); } inline ObjectArray<ObjectArray<Class>>* Class::GetThrows() { CHECK(IsProxyClass()); // Second static field. auto* field = GetStaticField(1); DCHECK_STREQ(field->GetName(), "throws"); MemberOffset field_offset = field->GetOffset(); return GetFieldObject<ObjectArray<ObjectArray<Class>>>(field_offset); } inline MemberOffset Class::GetDisableIntrinsicFlagOffset() { CHECK(IsReferenceClass()); // First static field auto* field = GetStaticField(0); DCHECK_STREQ(field->GetName(), "disableIntrinsic"); return field->GetOffset(); } inline MemberOffset Class::GetSlowPathFlagOffset() { CHECK(IsReferenceClass()); // Second static field auto* field = GetStaticField(1); DCHECK_STREQ(field->GetName(), "slowPathEnabled"); return field->GetOffset(); } inline bool Class::GetSlowPathEnabled() { return GetFieldBoolean(GetSlowPathFlagOffset()); } inline void Class::SetSlowPath(bool enabled) { SetFieldBoolean<false, false>(GetSlowPathFlagOffset(), enabled); } inline void Class::InitializeClassVisitor::operator()( mirror::Object* obj, size_t usable_size) const { DCHECK_LE(class_size_, usable_size); // Avoid AsClass as object is not yet in live bitmap or allocation stack. mirror::Class* klass = down_cast<mirror::Class*>(obj); // DCHECK(klass->IsClass()); klass->SetClassSize(class_size_); klass->SetPrimitiveType(Primitive::kPrimNot); // Default to not being primitive. klass->SetDexClassDefIndex(DexFile::kDexNoIndex16); // Default to no valid class def index. klass->SetDexTypeIndex(DexFile::kDexNoIndex16); // Default to no valid type index. } inline void Class::SetAccessFlags(uint32_t new_access_flags) { // Called inside a transaction when setting pre-verified flag during boot image compilation. if (Runtime::Current()->IsActiveTransaction()) { SetField32<true>(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_), new_access_flags); } else { SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_), new_access_flags); } } inline uint32_t Class::NumDirectInterfaces() { if (IsPrimitive()) { return 0; } else if (IsArrayClass()) { return 2; } else if (IsProxyClass()) { mirror::ObjectArray<mirror::Class>* interfaces = GetInterfaces(); return interfaces != nullptr ? interfaces->GetLength() : 0; } else { const DexFile::TypeList* interfaces = GetInterfaceTypeList(); if (interfaces == nullptr) { return 0; } else { return interfaces->Size(); } } } inline void Class::SetDexCacheStrings(ObjectArray<String>* new_dex_cache_strings) { SetFieldObject<false>(DexCacheStringsOffset(), new_dex_cache_strings); } inline ObjectArray<String>* Class::GetDexCacheStrings() { return GetFieldObject<ObjectArray<String>>(DexCacheStringsOffset()); } template<class Visitor> void mirror::Class::VisitNativeRoots(Visitor& visitor, size_t pointer_size) { ArtField* const sfields = GetSFieldsUnchecked(); // Since we visit class roots while we may be writing these fields, check against null. if (sfields != nullptr) { for (size_t i = 0, count = NumStaticFields(); i < count; ++i) { auto* f = &sfields[i]; if (kIsDebugBuild && IsResolved()) { CHECK_EQ(f->GetDeclaringClass(), this) << GetStatus(); } f->VisitRoots(visitor); } } ArtField* const ifields = GetIFieldsUnchecked(); if (ifields != nullptr) { for (size_t i = 0, count = NumInstanceFields(); i < count; ++i) { auto* f = &ifields[i]; if (kIsDebugBuild && IsResolved()) { CHECK_EQ(f->GetDeclaringClass(), this) << GetStatus(); } f->VisitRoots(visitor); } } for (auto& m : GetDirectMethods(pointer_size)) { m.VisitRoots(visitor); } for (auto& m : GetVirtualMethods(pointer_size)) { m.VisitRoots(visitor); } } inline StrideIterator<ArtMethod> Class::DirectMethodsBegin(size_t pointer_size) { CheckPointerSize(pointer_size); auto* methods = GetDirectMethodsPtrUnchecked(); auto stride = ArtMethod::ObjectSize(pointer_size); return StrideIterator<ArtMethod>(reinterpret_cast<uintptr_t>(methods), stride); } inline StrideIterator<ArtMethod> Class::DirectMethodsEnd(size_t pointer_size) { CheckPointerSize(pointer_size); auto* methods = GetDirectMethodsPtrUnchecked(); auto stride = ArtMethod::ObjectSize(pointer_size); auto count = NumDirectMethods(); return StrideIterator<ArtMethod>(reinterpret_cast<uintptr_t>(methods) + stride * count, stride); } inline IterationRange<StrideIterator<ArtMethod>> Class::GetDirectMethods(size_t pointer_size) { CheckPointerSize(pointer_size); return MakeIterationRange(DirectMethodsBegin(pointer_size), DirectMethodsEnd(pointer_size)); } inline StrideIterator<ArtMethod> Class::VirtualMethodsBegin(size_t pointer_size) { CheckPointerSize(pointer_size); auto* methods = GetVirtualMethodsPtrUnchecked(); auto stride = ArtMethod::ObjectSize(pointer_size); return StrideIterator<ArtMethod>(reinterpret_cast<uintptr_t>(methods), stride); } inline StrideIterator<ArtMethod> Class::VirtualMethodsEnd(size_t pointer_size) { CheckPointerSize(pointer_size); auto* methods = GetVirtualMethodsPtrUnchecked(); auto stride = ArtMethod::ObjectSize(pointer_size); auto count = NumVirtualMethods(); return StrideIterator<ArtMethod>(reinterpret_cast<uintptr_t>(methods) + stride * count, stride); } inline IterationRange<StrideIterator<ArtMethod>> Class::GetVirtualMethods(size_t pointer_size) { return MakeIterationRange(VirtualMethodsBegin(pointer_size), VirtualMethodsEnd(pointer_size)); } inline MemberOffset Class::EmbeddedImTableOffset(size_t pointer_size) { CheckPointerSize(pointer_size); // Round up since we want the embedded imt and vtable to be pointer size aligned in case 64 bits. // Add 32 bits for embedded vtable length. return MemberOffset( RoundUp(EmbeddedVTableLengthOffset().Uint32Value() + sizeof(uint32_t), pointer_size)); } inline MemberOffset Class::EmbeddedVTableOffset(size_t pointer_size) { CheckPointerSize(pointer_size); return MemberOffset(EmbeddedImTableOffset(pointer_size).Uint32Value() + kImtSize * ImTableEntrySize(pointer_size)); } inline void Class::CheckPointerSize(size_t pointer_size) { DCHECK(ValidPointerSize(pointer_size)) << pointer_size; DCHECK_EQ(pointer_size, Runtime::Current()->GetClassLinker()->GetImagePointerSize()); } } // namespace mirror } // namespace art #endif // ART_RUNTIME_MIRROR_CLASS_INL_H_