C++程序  |  1893行  |  69.25 KB

/*
 * Copyright (C) 2008 The Android Open Source Project
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <inttypes.h>
#include <limits.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

#include <chrono>
#include <functional>
#include <thread>
#include <utility>
#include <vector>

#include <android-base/file.h>
#include <android-base/macros.h>
#include <android-base/parseint.h>
#include <android-base/parsenetaddress.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/test_utils.h>
#include <android-base/unique_fd.h>
#include <sparse/sparse.h>
#include <ziparchive/zip_archive.h>

#include "bootimg_utils.h"
#include "diagnose_usb.h"
#include "fastboot.h"
#include "fs.h"
#include "tcp.h"
#include "transport.h"
#include "udp.h"
#include "usb.h"

using android::base::unique_fd;

#ifndef O_BINARY
#define O_BINARY 0
#endif

char cur_product[FB_RESPONSE_SZ + 1];

static const char* serial = nullptr;
static const char* cmdline = nullptr;
static unsigned short vendor_id = 0;
static int long_listing = 0;
// Don't resparse files in too-big chunks.
// libsparse will support INT_MAX, but this results in large allocations, so
// let's keep it at 1GB to avoid memory pressure on the host.
static constexpr int64_t RESPARSE_LIMIT = 1 * 1024 * 1024 * 1024;
static int64_t sparse_limit = -1;
static int64_t target_sparse_limit = -1;

static unsigned page_size = 2048;
static unsigned base_addr      = 0x10000000;
static unsigned kernel_offset  = 0x00008000;
static unsigned ramdisk_offset = 0x01000000;
static unsigned second_offset  = 0x00f00000;
static unsigned tags_offset    = 0x00000100;

static bool g_disable_verity = false;
static bool g_disable_verification = false;

static const std::string convert_fbe_marker_filename("convert_fbe");

enum fb_buffer_type {
    FB_BUFFER_FD,
    FB_BUFFER_SPARSE,
};

struct fastboot_buffer {
    enum fb_buffer_type type;
    void* data;
    int64_t sz;
    int fd;
};

static struct {
    const char* nickname;
    const char* img_name;
    const char* sig_name;
    const char* part_name;
    bool is_optional;
    bool is_secondary;
} images[] = {
    // clang-format off
    { "boot",     "boot.img",         "boot.sig",     "boot",     false, false },
    { nullptr,    "boot_other.img",   "boot.sig",     "boot",     true,  true  },
    { "dtbo",     "dtbo.img",         "dtbo.sig",     "dtbo",     true,  false },
    { "dts",      "dt.img",           "dt.sig",       "dts",      true,  false },
    { "odm",      "odm.img",          "odm.sig",      "odm",      true,  false },
    { "product",  "product.img",      "product.sig",  "product",  true,  false },
    { "recovery", "recovery.img",     "recovery.sig", "recovery", true,  false },
    { "system",   "system.img",       "system.sig",   "system",   false, false },
    { nullptr,    "system_other.img", "system.sig",   "system",   true,  true  },
    { "vbmeta",   "vbmeta.img",       "vbmeta.sig",   "vbmeta",   true,  false },
    { "vendor",   "vendor.img",       "vendor.sig",   "vendor",   true,  false },
    { nullptr,    "vendor_other.img", "vendor.sig",   "vendor",   true,  true  },
    // clang-format on
};

static std::string find_item_given_name(const char* img_name) {
    char* dir = getenv("ANDROID_PRODUCT_OUT");
    if (dir == nullptr || dir[0] == '\0') {
        die("ANDROID_PRODUCT_OUT not set");
    }
    return android::base::StringPrintf("%s/%s", dir, img_name);
}

static std::string find_item(const std::string& item) {
    for (size_t i = 0; i < arraysize(images); ++i) {
        if (images[i].nickname && item == images[i].nickname) {
            return find_item_given_name(images[i].img_name);
        }
    }

    if (item == "userdata") return find_item_given_name("userdata.img");
    if (item == "cache") return find_item_given_name("cache.img");

    fprintf(stderr, "unknown partition '%s'\n", item.c_str());
    return "";
}

static int64_t get_file_size(int fd) {
    struct stat sb;
    return fstat(fd, &sb) == -1 ? -1 : sb.st_size;
}

static void* load_fd(int fd, int64_t* sz) {
    int errno_tmp;
    char* data = nullptr;

    *sz = get_file_size(fd);
    if (*sz < 0) {
        goto oops;
    }

    data = (char*) malloc(*sz);
    if (data == nullptr) goto oops;

    if(read(fd, data, *sz) != *sz) goto oops;
    close(fd);

    return data;

oops:
    errno_tmp = errno;
    close(fd);
    if(data != 0) free(data);
    errno = errno_tmp;
    return 0;
}

static void* load_file(const std::string& path, int64_t* sz) {
    int fd = open(path.c_str(), O_RDONLY | O_BINARY);
    if (fd == -1) return nullptr;
    return load_fd(fd, sz);
}

static int match_fastboot_with_serial(usb_ifc_info* info, const char* local_serial) {
    // Require a matching vendor id if the user specified one with -i.
    if (vendor_id != 0 && info->dev_vendor != vendor_id) {
        return -1;
    }

    if (info->ifc_class != 0xff || info->ifc_subclass != 0x42 || info->ifc_protocol != 0x03) {
        return -1;
    }

    // require matching serial number or device path if requested
    // at the command line with the -s option.
    if (local_serial && (strcmp(local_serial, info->serial_number) != 0 &&
                   strcmp(local_serial, info->device_path) != 0)) return -1;
    return 0;
}

static int match_fastboot(usb_ifc_info* info) {
    return match_fastboot_with_serial(info, serial);
}

static int list_devices_callback(usb_ifc_info* info) {
    if (match_fastboot_with_serial(info, nullptr) == 0) {
        std::string serial = info->serial_number;
        if (!info->writable) {
            serial = UsbNoPermissionsShortHelpText();
        }
        if (!serial[0]) {
            serial = "????????????";
        }
        // output compatible with "adb devices"
        if (!long_listing) {
            printf("%s\tfastboot", serial.c_str());
        } else {
            printf("%-22s fastboot", serial.c_str());
            if (strlen(info->device_path) > 0) printf(" %s", info->device_path);
        }
        putchar('\n');
    }

    return -1;
}

// Opens a new Transport connected to a device. If |serial| is non-null it will be used to identify
// a specific device, otherwise the first USB device found will be used.
//
// If |serial| is non-null but invalid, this prints an error message to stderr and returns nullptr.
// Otherwise it blocks until the target is available.
//
// The returned Transport is a singleton, so multiple calls to this function will return the same
// object, and the caller should not attempt to delete the returned Transport.
static Transport* open_device() {
    static Transport* transport = nullptr;
    bool announce = true;

    if (transport != nullptr) {
        return transport;
    }

    Socket::Protocol protocol = Socket::Protocol::kTcp;
    std::string host;
    int port = 0;
    if (serial != nullptr) {
        const char* net_address = nullptr;

        if (android::base::StartsWith(serial, "tcp:")) {
            protocol = Socket::Protocol::kTcp;
            port = tcp::kDefaultPort;
            net_address = serial + strlen("tcp:");
        } else if (android::base::StartsWith(serial, "udp:")) {
            protocol = Socket::Protocol::kUdp;
            port = udp::kDefaultPort;
            net_address = serial + strlen("udp:");
        }

        if (net_address != nullptr) {
            std::string error;
            if (!android::base::ParseNetAddress(net_address, &host, &port, nullptr, &error)) {
                fprintf(stderr, "error: Invalid network address '%s': %s\n", net_address,
                        error.c_str());
                return nullptr;
            }
        }
    }

    while (true) {
        if (!host.empty()) {
            std::string error;
            if (protocol == Socket::Protocol::kTcp) {
                transport = tcp::Connect(host, port, &error).release();
            } else if (protocol == Socket::Protocol::kUdp) {
                transport = udp::Connect(host, port, &error).release();
            }

            if (transport == nullptr && announce) {
                fprintf(stderr, "error: %s\n", error.c_str());
            }
        } else {
            transport = usb_open(match_fastboot);
        }

        if (transport != nullptr) {
            return transport;
        }

        if (announce) {
            announce = false;
            fprintf(stderr, "< waiting for %s >\n", serial ? serial : "any device");
        }
        std::this_thread::sleep_for(std::chrono::milliseconds(1));
    }
}

static void list_devices() {
    // We don't actually open a USB device here,
    // just getting our callback called so we can
    // list all the connected devices.
    usb_open(list_devices_callback);
}

static void syntax_error(const char* fmt, ...) {
    fprintf(stderr, "fastboot: usage: ");

    va_list ap;
    va_start(ap, fmt);
    vfprintf(stderr, fmt, ap);
    va_end(ap);

    fprintf(stderr, "\n");
    exit(1);
}

static int show_help() {
    // clang-format off
    fprintf(stdout,
/*           1234567890123456789012345678901234567890123456789012345678901234567890123456 */
            "usage: fastboot [ <option> ] <command>\n"
            "\n"
            "commands:\n"
            "  update <filename>                        Reflash device from update.zip.\n"
            "                                           Sets the flashed slot as active.\n"
            "  flashall                                 Flash boot, system, vendor, and --\n"
            "                                           if found -- recovery. If the device\n"
            "                                           supports slots, the slot that has\n"
            "                                           been flashed to is set as active.\n"
            "                                           Secondary images may be flashed to\n"
            "                                           an inactive slot.\n"
            "  flash <partition> [ <filename> ]         Write a file to a flash partition.\n"
            "  flashing lock                            Locks the device. Prevents flashing.\n"
            "  flashing unlock                          Unlocks the device. Allows flashing\n"
            "                                           any partition except\n"
            "                                           bootloader-related partitions.\n"
            "  flashing lock_critical                   Prevents flashing bootloader-related\n"
            "                                           partitions.\n"
            "  flashing unlock_critical                 Enables flashing bootloader-related\n"
            "                                           partitions.\n"
            "  flashing get_unlock_ability              Queries bootloader to see if the\n"
            "                                           device is unlocked.\n"
            "  flashing get_unlock_bootloader_nonce     Queries the bootloader to get the\n"
            "                                           unlock nonce.\n"
            "  flashing unlock_bootloader <request>     Issue unlock bootloader using request.\n"
            "  flashing lock_bootloader                 Locks the bootloader to prevent\n"
            "                                           bootloader version rollback.\n"
            "  erase <partition>                        Erase a flash partition.\n"
            "  format[:[<fs type>][:[<size>]] <partition>\n"
            "                                           Format a flash partition. Can\n"
            "                                           override the fs type and/or size\n"
            "                                           the bootloader reports.\n"
            "  getvar <variable>                        Display a bootloader variable.\n"
            "  set_active <slot>                        Sets the active slot. If slots are\n"
            "                                           not supported, this does nothing.\n"
            "  boot <kernel> [ <ramdisk> [ <second> ] ] Download and boot kernel.\n"
            "  flash:raw <bootable-partition> <kernel> [ <ramdisk> [ <second> ] ]\n"
            "                                           Create bootimage and flash it.\n"
            "  devices [-l]                             List all connected devices [with\n"
            "                                           device paths].\n"
            "  continue                                 Continue with autoboot.\n"
            "  reboot [bootloader|emergency]            Reboot device [into bootloader or emergency mode].\n"
            "  reboot-bootloader                        Reboot device into bootloader.\n"
            "  oem <parameter1> ... <parameterN>        Executes oem specific command.\n"
            "  stage <infile>                           Sends contents of <infile> to stage for\n"
            "                                           the next command. Supported only on\n"
            "                                           Android Things devices.\n"
            "  get_staged <outfile>                     Receives data to <outfile> staged by the\n"
            "                                           last command. Supported only on Android\n"
            "                                           Things devices.\n"
            "  help                                     Show this help message.\n"
            "\n"
            "options:\n"
            "  -w                                       Erase userdata and cache (and format\n"
            "                                           if supported by partition type).\n"
            "  -u                                       Do not erase partition before\n"
            "                                           formatting.\n"
            "  -s <specific device>                     Specify a device. For USB, provide either\n"
            "                                           a serial number or path to device port.\n"
            "                                           For ethernet, provide an address in the\n"
            "                                           form <protocol>:<hostname>[:port] where\n"
            "                                           <protocol> is either tcp or udp.\n"
            "  -c <cmdline>                             Override kernel commandline.\n"
            "  -i <vendor id>                           Specify a custom USB vendor id.\n"
            "  -b, --base <base_addr>                   Specify a custom kernel base\n"
            "                                           address (default: 0x10000000).\n"
            "  --kernel-offset                          Specify a custom kernel offset.\n"
            "                                           (default: 0x00008000)\n"
            "  --ramdisk-offset                         Specify a custom ramdisk offset.\n"
            "                                           (default: 0x01000000)\n"
            "  --tags-offset                            Specify a custom tags offset.\n"
            "                                           (default: 0x00000100)\n"
            "  -n, --page-size <page size>              Specify the nand page size\n"
            "                                           (default: 2048).\n"
            "  -S <size>[K|M|G]                         Automatically sparse files greater\n"
            "                                           than 'size'. 0 to disable.\n"
            "  --slot <slot>                            Specify slot name to be used if the\n"
            "                                           device supports slots. All operations\n"
            "                                           on partitions that support slots will\n"
            "                                           be done on the slot specified.\n"
            "                                           'all' can be given to refer to all slots.\n"
            "                                           'other' can be given to refer to a\n"
            "                                           non-current slot. If this flag is not\n"
            "                                           used, slotted partitions will default\n"
            "                                           to the current active slot.\n"
            "  -a, --set-active[=<slot>]                Sets the active slot. If no slot is\n"
            "                                           provided, this will default to the value\n"
            "                                           given by --slot. If slots are not\n"
            "                                           supported, this does nothing. This will\n"
            "                                           run after all non-reboot commands.\n"
            "  --skip-secondary                         Will not flash secondary slots when\n"
            "                                           performing a flashall or update. This\n"
            "                                           will preserve data on other slots.\n"
            "  --skip-reboot                            Will not reboot the device when\n"
            "                                           performing commands that normally\n"
            "                                           trigger a reboot.\n"
            "  --disable-verity                         Set the disable-verity flag in the\n"
            "                                           the vbmeta image being flashed.\n"
            "  --disable-verification                   Set the disable-verification flag in"
            "                                           the vbmeta image being flashed.\n"
#if !defined(_WIN32)
            "  --wipe-and-use-fbe                       On devices which support it,\n"
            "                                           erase userdata and cache, and\n"
            "                                           enable file-based encryption\n"
#endif
            "  --unbuffered                             Do not buffer input or output.\n"
            "  --version                                Display version.\n"
            "  --header-version                         Set boot image header version while\n"
            "                                           using flash:raw and boot commands to \n"
            "                                           to create a boot image.\n"
            "  -h, --help                               show this message.\n"
        );
    // clang-format off
    return 0;
}

static void* load_bootable_image(const std::string& kernel, const std::string& ramdisk,
                                 const std::string& second_stage, int64_t* sz,
                                 const char* cmdline, uint32_t header_version) {
    int64_t ksize;
    void* kdata = load_file(kernel.c_str(), &ksize);
    if (kdata == nullptr) die("cannot load '%s': %s", kernel.c_str(), strerror(errno));

    // Is this actually a boot image?
    if (ksize < static_cast<int64_t>(sizeof(boot_img_hdr_v1))) {
        die("cannot load '%s': too short", kernel.c_str());
    }
    if (!memcmp(kdata, BOOT_MAGIC, BOOT_MAGIC_SIZE)) {
        if (cmdline) bootimg_set_cmdline(reinterpret_cast<boot_img_hdr_v1*>(kdata), cmdline);

        if (!ramdisk.empty()) die("cannot boot a boot.img *and* ramdisk");

        *sz = ksize;
        return kdata;
    }

    void* rdata = nullptr;
    int64_t rsize = 0;
    if (!ramdisk.empty()) {
        rdata = load_file(ramdisk.c_str(), &rsize);
        if (rdata == nullptr) die("cannot load '%s': %s", ramdisk.c_str(), strerror(errno));
    }

    void* sdata = nullptr;
    int64_t ssize = 0;
    if (!second_stage.empty()) {
        sdata = load_file(second_stage.c_str(), &ssize);
        if (sdata == nullptr) die("cannot load '%s': %s", second_stage.c_str(), strerror(errno));
    }

    fprintf(stderr,"creating boot image...\n");
    int64_t bsize = 0;
    boot_img_hdr_v1* bdata = mkbootimg(kdata, ksize, kernel_offset,
                      rdata, rsize, ramdisk_offset,
                      sdata, ssize, second_offset,
                      page_size, base_addr, tags_offset, header_version, &bsize);
    if (bdata == nullptr) die("failed to create boot.img");

    if (cmdline) bootimg_set_cmdline(bdata, cmdline);
    fprintf(stderr, "creating boot image - %" PRId64 " bytes\n", bsize);
    *sz = bsize;

    return bdata;
}

static void* unzip_to_memory(ZipArchiveHandle zip, const char* entry_name, int64_t* sz) {
    ZipString zip_entry_name(entry_name);
    ZipEntry zip_entry;
    if (FindEntry(zip, zip_entry_name, &zip_entry) != 0) {
        fprintf(stderr, "archive does not contain '%s'\n", entry_name);
        return nullptr;
    }

    *sz = zip_entry.uncompressed_length;

    fprintf(stderr, "extracting %s (%" PRId64 " MB) to RAM...\n", entry_name, *sz / 1024 / 1024);
    uint8_t* data = reinterpret_cast<uint8_t*>(malloc(zip_entry.uncompressed_length));
    if (data == nullptr) die("failed to allocate %" PRId64 " bytes for '%s'", *sz, entry_name);

    int error = ExtractToMemory(zip, &zip_entry, data, zip_entry.uncompressed_length);
    if (error != 0) die("failed to extract '%s': %s", entry_name, ErrorCodeString(error));

    return data;
}

#if defined(_WIN32)

// TODO: move this to somewhere it can be shared.

#include <windows.h>

// Windows' tmpfile(3) requires administrator rights because
// it creates temporary files in the root directory.
static FILE* win32_tmpfile() {
    char temp_path[PATH_MAX];
    DWORD nchars = GetTempPath(sizeof(temp_path), temp_path);
    if (nchars == 0 || nchars >= sizeof(temp_path)) {
        die("GetTempPath failed, error %ld", GetLastError());
    }

    char filename[PATH_MAX];
    if (GetTempFileName(temp_path, "fastboot", 0, filename) == 0) {
        die("GetTempFileName failed, error %ld", GetLastError());
    }

    return fopen(filename, "w+bTD");
}

#define tmpfile win32_tmpfile

static std::string make_temporary_directory() {
    die("make_temporary_directory not supported under Windows, sorry!");
}

static int make_temporary_fd() {
    // TODO: reimplement to avoid leaking a FILE*.
    return fileno(tmpfile());
}

#else

static std::string make_temporary_template() {
    const char* tmpdir = getenv("TMPDIR");
    if (tmpdir == nullptr) tmpdir = P_tmpdir;
    return std::string(tmpdir) + "/fastboot_userdata_XXXXXX";
}

static std::string make_temporary_directory() {
    std::string result(make_temporary_template());
    if (mkdtemp(&result[0]) == nullptr) {
        fprintf(stderr, "Unable to create temporary directory: %s\n", strerror(errno));
        return "";
    }
    return result;
}

static int make_temporary_fd() {
    std::string path_template(make_temporary_template());
    int fd = mkstemp(&path_template[0]);
    if (fd == -1) {
        fprintf(stderr, "Unable to create temporary file: %s\n", strerror(errno));
        return -1;
    }
    unlink(path_template.c_str());
    return fd;
}

#endif

static std::string create_fbemarker_tmpdir() {
    std::string dir = make_temporary_directory();
    if (dir.empty()) {
        fprintf(stderr, "Unable to create local temp directory for FBE marker\n");
        return "";
    }
    std::string marker_file = dir + "/" + convert_fbe_marker_filename;
    int fd = open(marker_file.c_str(), O_CREAT | O_WRONLY | O_CLOEXEC, 0666);
    if (fd == -1) {
        fprintf(stderr, "Unable to create FBE marker file %s locally: %d, %s\n",
            marker_file.c_str(), errno, strerror(errno));
        return "";
    }
    close(fd);
    return dir;
}

static void delete_fbemarker_tmpdir(const std::string& dir) {
    std::string marker_file = dir + "/" + convert_fbe_marker_filename;
    if (unlink(marker_file.c_str()) == -1) {
        fprintf(stderr, "Unable to delete FBE marker file %s locally: %d, %s\n",
            marker_file.c_str(), errno, strerror(errno));
        return;
    }
    if (rmdir(dir.c_str()) == -1) {
        fprintf(stderr, "Unable to delete FBE marker directory %s locally: %d, %s\n",
            dir.c_str(), errno, strerror(errno));
        return;
    }
}

static int unzip_to_file(ZipArchiveHandle zip, const char* entry_name) {
    unique_fd fd(make_temporary_fd());
    if (fd == -1) {
        die("failed to create temporary file for '%s': %s", entry_name, strerror(errno));
    }

    ZipString zip_entry_name(entry_name);
    ZipEntry zip_entry;
    if (FindEntry(zip, zip_entry_name, &zip_entry) != 0) {
        fprintf(stderr, "archive does not contain '%s'\n", entry_name);
        return -1;
    }

    fprintf(stderr, "extracting %s (%" PRIu32 " MB) to disk...", entry_name,
            zip_entry.uncompressed_length / 1024 / 1024);
    double start = now();
    int error = ExtractEntryToFile(zip, &zip_entry, fd);
    if (error != 0) {
        die("\nfailed to extract '%s': %s", entry_name, ErrorCodeString(error));
    }

    if (lseek(fd, 0, SEEK_SET) != 0) {
        die("\nlseek on extracted file '%s' failed: %s", entry_name, strerror(errno));
    }

    fprintf(stderr, " took %.3fs\n", now() - start);

    return fd.release();
}

static char* strip(char* s) {
    while (*s && isspace(*s)) s++;

    int n = strlen(s);
    while (n-- > 0) {
        if (!isspace(s[n])) break;
        s[n] = 0;
    }
    return s;
}

#define MAX_OPTIONS 32
static void check_requirement(Transport* transport, char* line) {
    char *val[MAX_OPTIONS];
    unsigned count;
    char *x;
    int invert = 0;

    // "require product=alpha|beta|gamma"
    // "require version-bootloader=1234"
    // "require-for-product:gamma version-bootloader=istanbul|constantinople"
    // "require partition-exists=vendor"

    char* name = line;
    const char* product = "";
    if (!strncmp(name, "reject ", 7)) {
        name += 7;
        invert = 1;
    } else if (!strncmp(name, "require ", 8)) {
        name += 8;
        invert = 0;
    } else if (!strncmp(name, "require-for-product:", 20)) {
        // Get the product and point name past it
        product = name + 20;
        name = strchr(name, ' ');
        if (!name) die("android-info.txt syntax error: %s", line);
        *name = 0;
        name += 1;
        invert = 0;
    }

    x = strchr(name, '=');
    if (x == 0) return;
    *x = 0;
    val[0] = x + 1;

    name = strip(name);

    // "require partition-exists=x" is a special case, added because of the trouble we had when
    // Pixel 2 shipped with new partitions and users used old versions of fastboot to flash them,
    // missing out new partitions. A device with new partitions can use "partition-exists" to
    // override the `is_optional` field in the `images` array.
    if (!strcmp(name, "partition-exists")) {
        const char* partition_name = val[0];
        std::string has_slot;
        if (!fb_getvar(transport, std::string("has-slot:") + partition_name, &has_slot) ||
            (has_slot != "yes" && has_slot != "no")) {
            die("device doesn't have required partition %s!", partition_name);
        }
        bool known_partition = false;
        for (size_t i = 0; i < arraysize(images); ++i) {
            if (images[i].nickname && !strcmp(images[i].nickname, partition_name)) {
                images[i].is_optional = false;
                known_partition = true;
            }
        }
        if (!known_partition) {
            die("device requires partition %s which is not known to this version of fastboot",
                partition_name);
        }
        return;
    }

    for(count = 1; count < MAX_OPTIONS; count++) {
        x = strchr(val[count - 1],'|');
        if (x == 0) break;
        *x = 0;
        val[count] = x + 1;
    }

    // Work around an unfortunate name mismatch.
    const char* var = name;
    if (!strcmp(name, "board")) var = "product";

    const char** out = reinterpret_cast<const char**>(malloc(sizeof(char*) * count));
    if (out == nullptr) die("out of memory");

    for (size_t i = 0; i < count; ++i) {
        out[i] = xstrdup(strip(val[i]));
    }

    fb_queue_require(product, var, invert, count, out);
}

static void check_requirements(Transport* transport, char* data, int64_t sz) {
    char* s = data;
    while (sz-- > 0) {
        if (*s == '\n') {
            *s++ = 0;
            check_requirement(transport, data);
            data = s;
        } else {
            s++;
        }
    }
    if (fb_execute_queue(transport)) die("requirements not met!");
}

static void queue_info_dump() {
    fb_queue_notice("--------------------------------------------");
    fb_queue_display("Bootloader Version...", "version-bootloader");
    fb_queue_display("Baseband Version.....", "version-baseband");
    fb_queue_display("Serial Number........", "serialno");
    fb_queue_notice("--------------------------------------------");
}

static struct sparse_file** load_sparse_files(int fd, int max_size) {
    struct sparse_file* s = sparse_file_import_auto(fd, false, true);
    if (!s) die("cannot sparse read file");

    int files = sparse_file_resparse(s, max_size, nullptr, 0);
    if (files < 0) die("Failed to resparse");

    sparse_file** out_s = reinterpret_cast<sparse_file**>(calloc(sizeof(struct sparse_file *), files + 1));
    if (!out_s) die("Failed to allocate sparse file array");

    files = sparse_file_resparse(s, max_size, out_s, files);
    if (files < 0) die("Failed to resparse");

    return out_s;
}

static int64_t get_target_sparse_limit(Transport* transport) {
    std::string max_download_size;
    if (!fb_getvar(transport, "max-download-size", &max_download_size) ||
            max_download_size.empty()) {
        fprintf(stderr, "target didn't report max-download-size\n");
        return 0;
    }

    // Some bootloaders (angler, for example) send spurious whitespace too.
    max_download_size = android::base::Trim(max_download_size);

    uint64_t limit;
    if (!android::base::ParseUint(max_download_size, &limit)) {
        fprintf(stderr, "couldn't parse max-download-size '%s'\n", max_download_size.c_str());
        return 0;
    }
    if (limit > 0) {
        fprintf(stderr, "target reported max download size of %" PRId64 " bytes\n", limit);
    }
    return limit;
}

static int64_t get_sparse_limit(Transport* transport, int64_t size) {
    int64_t limit;

    if (sparse_limit == 0) {
        return 0;
    } else if (sparse_limit > 0) {
        limit = sparse_limit;
    } else {
        if (target_sparse_limit == -1) {
            target_sparse_limit = get_target_sparse_limit(transport);
        }
        if (target_sparse_limit > 0) {
            limit = target_sparse_limit;
        } else {
            return 0;
        }
    }

    if (size > limit) {
        return std::min(limit, RESPARSE_LIMIT);
    }

    return 0;
}

// Until we get lazy inode table init working in make_ext4fs, we need to
// erase partitions of type ext4 before flashing a filesystem so no stale
// inodes are left lying around.  Otherwise, e2fsck gets very upset.
static bool needs_erase(Transport* transport, const char* partition) {
    std::string partition_type;
    if (!fb_getvar(transport, std::string("partition-type:") + partition, &partition_type)) {
        return false;
    }
    return partition_type == "ext4";
}

static bool load_buf_fd(Transport* transport, int fd, struct fastboot_buffer* buf) {
    int64_t sz = get_file_size(fd);
    if (sz == -1) {
        return false;
    }

    lseek64(fd, 0, SEEK_SET);
    int64_t limit = get_sparse_limit(transport, sz);
    if (limit) {
        sparse_file** s = load_sparse_files(fd, limit);
        if (s == nullptr) {
            return false;
        }
        buf->type = FB_BUFFER_SPARSE;
        buf->data = s;
    } else {
        buf->type = FB_BUFFER_FD;
        buf->data = nullptr;
        buf->fd = fd;
        buf->sz = sz;
    }

    return true;
}

static bool load_buf(Transport* transport, const char* fname, struct fastboot_buffer* buf) {
    unique_fd fd(TEMP_FAILURE_RETRY(open(fname, O_RDONLY | O_BINARY)));

    if (fd == -1) {
        return false;
    }

    struct stat s;
    if (fstat(fd, &s)) {
        return false;
    }
    if (!S_ISREG(s.st_mode)) {
        errno = S_ISDIR(s.st_mode) ? EISDIR : EINVAL;
        return false;
    }

    return load_buf_fd(transport, fd.release(), buf);
}

static void rewrite_vbmeta_buffer(struct fastboot_buffer* buf) {
    // Buffer needs to be at least the size of the VBMeta struct which
    // is 256 bytes.
    if (buf->sz < 256) {
        return;
    }

    int fd = make_temporary_fd();
    if (fd == -1) {
        die("Failed to create temporary file for vbmeta rewriting");
    }

    std::string data;
    if (!android::base::ReadFdToString(buf->fd, &data)) {
        die("Failed reading from vbmeta");
    }

    // There's a 32-bit big endian |flags| field at offset 120 where
    // bit 0 corresponds to disable-verity and bit 1 corresponds to
    // disable-verification.
    //
    // See external/avb/libavb/avb_vbmeta_image.h for the layout of
    // the VBMeta struct.
    if (g_disable_verity) {
        data[123] |= 0x01;
    }
    if (g_disable_verification) {
        data[123] |= 0x02;
    }

    if (!android::base::WriteStringToFd(data, fd)) {
        die("Failed writing to modified vbmeta");
    }
    close(buf->fd);
    buf->fd = fd;
    lseek(fd, 0, SEEK_SET);
}

static void flash_buf(const std::string& partition, struct fastboot_buffer *buf)
{
    sparse_file** s;

    // Rewrite vbmeta if that's what we're flashing and modification has been requested.
    if ((g_disable_verity || g_disable_verification) &&
        (partition == "vbmeta" || partition == "vbmeta_a" || partition == "vbmeta_b")) {
        rewrite_vbmeta_buffer(buf);
    }

    switch (buf->type) {
        case FB_BUFFER_SPARSE: {
            std::vector<std::pair<sparse_file*, int64_t>> sparse_files;
            s = reinterpret_cast<sparse_file**>(buf->data);
            while (*s) {
                int64_t sz = sparse_file_len(*s, true, false);
                sparse_files.emplace_back(*s, sz);
                ++s;
            }

            for (size_t i = 0; i < sparse_files.size(); ++i) {
                const auto& pair = sparse_files[i];
                fb_queue_flash_sparse(partition, pair.first, pair.second, i + 1, sparse_files.size());
            }
            break;
        }
        case FB_BUFFER_FD:
            fb_queue_flash_fd(partition, buf->fd, buf->sz);
            break;
        default:
            die("unknown buffer type: %d", buf->type);
    }
}

static std::string get_current_slot(Transport* transport)
{
    std::string current_slot;
    if (fb_getvar(transport, "current-slot", &current_slot)) {
        if (current_slot == "_a") return "a"; // Legacy support
        if (current_slot == "_b") return "b"; // Legacy support
        return current_slot;
    }
    return "";
}

// Legacy support
static std::vector<std::string> get_suffixes_obsolete(Transport* transport) {
    std::vector<std::string> suffixes;
    std::string suffix_list;
    if (!fb_getvar(transport, "slot-suffixes", &suffix_list)) {
        return suffixes;
    }
    suffixes = android::base::Split(suffix_list, ",");
    // Unfortunately some devices will return an error message in the
    // guise of a valid value. If we only see only one suffix, it's probably
    // not real.
    if (suffixes.size() == 1) {
        suffixes.clear();
    }
    return suffixes;
}

// Legacy support
static bool supports_AB_obsolete(Transport* transport) {
  return !get_suffixes_obsolete(transport).empty();
}

static int get_slot_count(Transport* transport) {
    std::string var;
    int count;
    if (!fb_getvar(transport, "slot-count", &var)) {
        if (supports_AB_obsolete(transport)) return 2; // Legacy support
    }
    if (!android::base::ParseInt(var, &count)) return 0;
    return count;
}

static bool supports_AB(Transport* transport) {
  return get_slot_count(transport) >= 2;
}

// Given a current slot, this returns what the 'other' slot is.
static std::string get_other_slot(const std::string& current_slot, int count) {
    if (count == 0) return "";

    char next = (current_slot[0] - 'a' + 1)%count + 'a';
    return std::string(1, next);
}

static std::string get_other_slot(Transport* transport, const std::string& current_slot) {
    return get_other_slot(current_slot, get_slot_count(transport));
}

static std::string get_other_slot(Transport* transport, int count) {
    return get_other_slot(get_current_slot(transport), count);
}

static std::string get_other_slot(Transport* transport) {
    return get_other_slot(get_current_slot(transport), get_slot_count(transport));
}

static std::string verify_slot(Transport* transport, const std::string& slot_name, bool allow_all) {
    std::string slot = slot_name;
    if (slot == "_a") slot = "a"; // Legacy support
    if (slot == "_b") slot = "b"; // Legacy support
    if (slot == "all") {
        if (allow_all) {
            return "all";
        } else {
            int count = get_slot_count(transport);
            if (count > 0) {
                return "a";
            } else {
                die("No known slots");
            }
        }
    }

    int count = get_slot_count(transport);
    if (count == 0) die("Device does not support slots");

    if (slot == "other") {
        std::string other = get_other_slot(transport, count);
        if (other == "") {
           die("No known slots");
        }
        return other;
    }

    if (slot.size() == 1 && (slot[0]-'a' >= 0 && slot[0]-'a' < count)) return slot;

    fprintf(stderr, "Slot %s does not exist. supported slots are:\n", slot.c_str());
    for (int i=0; i<count; i++) {
        fprintf(stderr, "%c\n", (char)(i + 'a'));
    }

    exit(1);
}

static std::string verify_slot(Transport* transport, const std::string& slot) {
   return verify_slot(transport, slot, true);
}

static void do_for_partition(Transport* transport, const std::string& part, const std::string& slot,
                             const std::function<void(const std::string&)>& func, bool force_slot) {
    std::string has_slot;
    std::string current_slot;

    if (!fb_getvar(transport, "has-slot:" + part, &has_slot)) {
        /* If has-slot is not supported, the answer is no. */
        has_slot = "no";
    }
    if (has_slot == "yes") {
        if (slot == "") {
            current_slot = get_current_slot(transport);
            if (current_slot == "") {
                die("Failed to identify current slot");
            }
            func(part + "_" + current_slot);
        } else {
            func(part + '_' + slot);
        }
    } else {
        if (force_slot && slot != "") {
             fprintf(stderr, "Warning: %s does not support slots, and slot %s was requested.\n",
                     part.c_str(), slot.c_str());
        }
        func(part);
    }
}

/* This function will find the real partition name given a base name, and a slot. If slot is NULL or
 * empty, it will use the current slot. If slot is "all", it will return a list of all possible
 * partition names. If force_slot is true, it will fail if a slot is specified, and the given
 * partition does not support slots.
 */
static void do_for_partitions(Transport* transport, const std::string& part, const std::string& slot,
                              const std::function<void(const std::string&)>& func, bool force_slot) {
    std::string has_slot;

    if (slot == "all") {
        if (!fb_getvar(transport, "has-slot:" + part, &has_slot)) {
            die("Could not check if partition %s has slot %s", part.c_str(), slot.c_str());
        }
        if (has_slot == "yes") {
            for (int i=0; i < get_slot_count(transport); i++) {
                do_for_partition(transport, part, std::string(1, (char)(i + 'a')), func, force_slot);
            }
        } else {
            do_for_partition(transport, part, "", func, force_slot);
        }
    } else {
        do_for_partition(transport, part, slot, func, force_slot);
    }
}

static void do_flash(Transport* transport, const char* pname, const char* fname) {
    struct fastboot_buffer buf;

    if (!load_buf(transport, fname, &buf)) {
        die("cannot load '%s': %s", fname, strerror(errno));
    }
    flash_buf(pname, &buf);
}

static void do_update_signature(ZipArchiveHandle zip, const char* filename) {
    int64_t sz;
    void* data = unzip_to_memory(zip, filename, &sz);
    if (data == nullptr) return;
    fb_queue_download("signature", data, sz);
    fb_queue_command("signature", "installing signature");
}

// Sets slot_override as the active slot. If slot_override is blank,
// set current slot as active instead. This clears slot-unbootable.
static void set_active(Transport* transport, const std::string& slot_override) {
    std::string separator = "";
    if (!supports_AB(transport)) {
        if (supports_AB_obsolete(transport)) {
            separator = "_"; // Legacy support
        } else {
            return;
        }
    }
    if (slot_override != "") {
        fb_set_active(separator + slot_override);
    } else {
        std::string current_slot = get_current_slot(transport);
        if (current_slot != "") {
            fb_set_active(separator + current_slot);
        }
    }
}

static void do_update(Transport* transport, const char* filename, const std::string& slot_override, bool erase_first, bool skip_secondary) {
    queue_info_dump();

    fb_queue_query_save("product", cur_product, sizeof(cur_product));

    ZipArchiveHandle zip;
    int error = OpenArchive(filename, &zip);
    if (error != 0) {
        die("failed to open zip file '%s': %s", filename, ErrorCodeString(error));
    }

    int64_t sz;
    void* data = unzip_to_memory(zip, "android-info.txt", &sz);
    if (data == nullptr) {
        die("update package '%s' has no android-info.txt", filename);
    }

    check_requirements(transport, reinterpret_cast<char*>(data), sz);

    std::string secondary;
    if (!skip_secondary) {
        if (slot_override != "") {
            secondary = get_other_slot(transport, slot_override);
        } else {
            secondary = get_other_slot(transport);
        }
        if (secondary == "") {
            if (supports_AB(transport)) {
                fprintf(stderr, "Warning: Could not determine slot for secondary images. Ignoring.\n");
            }
            skip_secondary = true;
        }
    }
    for (size_t i = 0; i < arraysize(images); ++i) {
        const char* slot = slot_override.c_str();
        if (images[i].is_secondary) {
            if (!skip_secondary) {
                slot = secondary.c_str();
            } else {
                continue;
            }
        }

        int fd = unzip_to_file(zip, images[i].img_name);
        if (fd == -1) {
            if (images[i].is_optional) {
                continue; // An optional file is missing, so ignore it.
            }
            die("non-optional file %s missing", images[i].img_name);
        }

        fastboot_buffer buf;
        if (!load_buf_fd(transport, fd, &buf)) {
            die("cannot load %s from flash: %s", images[i].img_name, strerror(errno));
        }

        auto update = [&](const std::string& partition) {
            do_update_signature(zip, images[i].sig_name);
            if (erase_first && needs_erase(transport, partition.c_str())) {
                fb_queue_erase(partition);
            }
            flash_buf(partition.c_str(), &buf);
            /* not closing the fd here since the sparse code keeps the fd around
             * but hasn't mmaped data yet. The temporary file will get cleaned up when the
             * program exits.
             */
        };
        do_for_partitions(transport, images[i].part_name, slot, update, false);
    }

    if (slot_override == "all") {
        set_active(transport, "a");
    } else {
        set_active(transport, slot_override);
    }

    CloseArchive(zip);
}

static void do_send_signature(const std::string& fn) {
    std::size_t extension_loc = fn.find(".img");
    if (extension_loc == std::string::npos) return;

    std::string fs_sig = fn.substr(0, extension_loc) + ".sig";

    int64_t sz;
    void* data = load_file(fs_sig.c_str(), &sz);
    if (data == nullptr) return;

    fb_queue_download("signature", data, sz);
    fb_queue_command("signature", "installing signature");
}

static void do_flashall(Transport* transport, const std::string& slot_override, int erase_first, bool skip_secondary) {
    std::string fname;
    queue_info_dump();

    fb_queue_query_save("product", cur_product, sizeof(cur_product));

    fname = find_item_given_name("android-info.txt");
    if (fname.empty()) die("cannot find android-info.txt");

    int64_t sz;
    void* data = load_file(fname.c_str(), &sz);
    if (data == nullptr) die("could not load android-info.txt: %s", strerror(errno));

    check_requirements(transport, reinterpret_cast<char*>(data), sz);

    std::string secondary;
    if (!skip_secondary) {
        if (slot_override != "") {
            secondary = get_other_slot(transport, slot_override);
        } else {
            secondary = get_other_slot(transport);
        }
        if (secondary == "") {
            if (supports_AB(transport)) {
                fprintf(stderr, "Warning: Could not determine slot for secondary images. Ignoring.\n");
            }
            skip_secondary = true;
        }
    }

    for (size_t i = 0; i < arraysize(images); i++) {
        const char* slot = NULL;
        if (images[i].is_secondary) {
            if (!skip_secondary) slot = secondary.c_str();
        } else {
            slot = slot_override.c_str();
        }
        if (!slot) continue;
        fname = find_item_given_name(images[i].img_name);
        fastboot_buffer buf;
        if (!load_buf(transport, fname.c_str(), &buf)) {
            if (images[i].is_optional) continue;
            die("could not load '%s': %s", images[i].img_name, strerror(errno));
        }

        auto flashall = [&](const std::string &partition) {
            do_send_signature(fname.c_str());
            if (erase_first && needs_erase(transport, partition.c_str())) {
                fb_queue_erase(partition);
            }
            flash_buf(partition.c_str(), &buf);
        };
        do_for_partitions(transport, images[i].part_name, slot, flashall, false);
    }

    if (slot_override == "all") {
        set_active(transport, "a");
    } else {
        set_active(transport, slot_override);
    }
}

static std::string next_arg(std::vector<std::string>* args) {
    if (args->empty()) syntax_error("expected argument");
    std::string result = args->front();
    args->erase(args->begin());
    return result;
}

static void do_bypass_unlock_command(std::vector<std::string>* args) {
    if (args->empty()) syntax_error("missing unlock_bootloader request");

    std::string filename = next_arg(args);

    int64_t sz;
    void* data = load_file(filename.c_str(), &sz);
    if (data == nullptr) die("could not load '%s': %s", filename.c_str(), strerror(errno));
    fb_queue_download("unlock_message", data, sz);
    fb_queue_command("flashing unlock_bootloader", "unlocking bootloader");
}

static void do_oem_command(const std::string& cmd, std::vector<std::string>* args) {
    if (args->empty()) syntax_error("empty oem command");

    std::string command(cmd);
    while (!args->empty()) {
        command += " " + next_arg(args);
    }
    fb_queue_command(command, "");
}

static int64_t parse_num(const char *arg)
{
    char *endptr;
    unsigned long long num;

    num = strtoull(arg, &endptr, 0);
    if (endptr == arg) {
        return -1;
    }

    if (*endptr == 'k' || *endptr == 'K') {
        if (num >= (-1ULL) / 1024) {
            return -1;
        }
        num *= 1024LL;
        endptr++;
    } else if (*endptr == 'm' || *endptr == 'M') {
        if (num >= (-1ULL) / (1024 * 1024)) {
            return -1;
        }
        num *= 1024LL * 1024LL;
        endptr++;
    } else if (*endptr == 'g' || *endptr == 'G') {
        if (num >= (-1ULL) / (1024 * 1024 * 1024)) {
            return -1;
        }
        num *= 1024LL * 1024LL * 1024LL;
        endptr++;
    }

    if (*endptr != '\0') {
        return -1;
    }

    if (num > INT64_MAX) {
        return -1;
    }

    return num;
}

static std::string fb_fix_numeric_var(std::string var) {
    // Some bootloaders (angler, for example), send spurious leading whitespace.
    var = android::base::Trim(var);
    // Some bootloaders (hammerhead, for example) use implicit hex.
    // This code used to use strtol with base 16.
    if (!android::base::StartsWith(var, "0x")) var = "0x" + var;
    return var;
}

static unsigned fb_get_flash_block_size(Transport* transport, std::string name) {
    std::string sizeString;
    if (!fb_getvar(transport, name, &sizeString) || sizeString.empty()) {
        // This device does not report flash block sizes, so return 0.
        return 0;
    }
    sizeString = fb_fix_numeric_var(sizeString);

    unsigned size;
    if (!android::base::ParseUint(sizeString, &size)) {
        fprintf(stderr, "Couldn't parse %s '%s'.\n", name.c_str(), sizeString.c_str());
        return 0;
    }
    if ((size & (size - 1)) != 0) {
        fprintf(stderr, "Invalid %s %u: must be a power of 2.\n", name.c_str(), size);
        return 0;
    }
    return size;
}

static void fb_perform_format(Transport* transport,
                              const std::string& partition, int skip_if_not_supported,
                              const std::string& type_override, const std::string& size_override,
                              const std::string& initial_dir) {
    std::string partition_type, partition_size;

    struct fastboot_buffer buf;
    const char* errMsg = nullptr;
    const struct fs_generator* gen = nullptr;
    TemporaryFile output;
    unique_fd fd;

    unsigned int limit = INT_MAX;
    if (target_sparse_limit > 0 && target_sparse_limit < limit) {
        limit = target_sparse_limit;
    }
    if (sparse_limit > 0 && sparse_limit < limit) {
        limit = sparse_limit;
    }

    if (!fb_getvar(transport, "partition-type:" + partition, &partition_type)) {
        errMsg = "Can't determine partition type.\n";
        goto failed;
    }
    if (!type_override.empty()) {
        if (partition_type != type_override) {
            fprintf(stderr, "Warning: %s type is %s, but %s was requested for formatting.\n",
                    partition.c_str(), partition_type.c_str(), type_override.c_str());
        }
        partition_type = type_override;
    }

    if (!fb_getvar(transport, "partition-size:" + partition, &partition_size)) {
        errMsg = "Unable to get partition size\n";
        goto failed;
    }
    if (!size_override.empty()) {
        if (partition_size != size_override) {
            fprintf(stderr, "Warning: %s size is %s, but %s was requested for formatting.\n",
                    partition.c_str(), partition_size.c_str(), size_override.c_str());
        }
        partition_size = size_override;
    }
    partition_size = fb_fix_numeric_var(partition_size);

    gen = fs_get_generator(partition_type);
    if (!gen) {
        if (skip_if_not_supported) {
            fprintf(stderr, "Erase successful, but not automatically formatting.\n");
            fprintf(stderr, "File system type %s not supported.\n", partition_type.c_str());
            return;
        }
        fprintf(stderr, "Formatting is not supported for file system with type '%s'.\n",
                partition_type.c_str());
        return;
    }

    int64_t size;
    if (!android::base::ParseInt(partition_size, &size)) {
        fprintf(stderr, "Couldn't parse partition size '%s'.\n", partition_size.c_str());
        return;
    }

    unsigned eraseBlkSize, logicalBlkSize;
    eraseBlkSize = fb_get_flash_block_size(transport, "erase-block-size");
    logicalBlkSize = fb_get_flash_block_size(transport, "logical-block-size");

    if (fs_generator_generate(gen, output.path, size, initial_dir,
            eraseBlkSize, logicalBlkSize)) {
        die("Cannot generate image for %s", partition.c_str());
        return;
    }

    fd.reset(open(output.path, O_RDONLY));
    if (fd == -1) {
        fprintf(stderr, "Cannot open generated image: %s\n", strerror(errno));
        return;
    }
    if (!load_buf_fd(transport, fd.release(), &buf)) {
        fprintf(stderr, "Cannot read image: %s\n", strerror(errno));
        return;
    }
    flash_buf(partition, &buf);
    return;

failed:
    if (skip_if_not_supported) {
        fprintf(stderr, "Erase successful, but not automatically formatting.\n");
        if (errMsg) fprintf(stderr, "%s", errMsg);
    }
    fprintf(stderr, "FAILED (%s)\n", fb_get_error().c_str());
}

int main(int argc, char **argv)
{
    bool wants_wipe = false;
    bool wants_reboot = false;
    bool wants_reboot_bootloader = false;
    bool wants_reboot_emergency = false;
    bool skip_reboot = false;
    bool wants_set_active = false;
    bool skip_secondary = false;
    bool erase_first = true;
    bool set_fbe_marker = false;
    void *data;
    uint32_t header_version = 0;
    int64_t sz;
    int longindex;
    std::string slot_override;
    std::string next_active;

    const struct option longopts[] = {
        {"base", required_argument, 0, 'b'},
        {"kernel_offset", required_argument, 0, 'k'},
        {"kernel-offset", required_argument, 0, 'k'},
        {"page_size", required_argument, 0, 'n'},
        {"page-size", required_argument, 0, 'n'},
        {"ramdisk_offset", required_argument, 0, 'r'},
        {"ramdisk-offset", required_argument, 0, 'r'},
        {"tags_offset", required_argument, 0, 't'},
        {"tags-offset", required_argument, 0, 't'},
        {"help", no_argument, 0, 'h'},
        {"unbuffered", no_argument, 0, 0},
        {"version", no_argument, 0, 0},
        {"slot", required_argument, 0, 0},
        {"set_active", optional_argument, 0, 'a'},
        {"set-active", optional_argument, 0, 'a'},
        {"skip-secondary", no_argument, 0, 0},
        {"skip-reboot", no_argument, 0, 0},
        {"disable-verity", no_argument, 0, 0},
        {"disable-verification", no_argument, 0, 0},
        {"header-version", required_argument, 0, 0},
#if !defined(_WIN32)
        {"wipe-and-use-fbe", no_argument, 0, 0},
#endif
        {0, 0, 0, 0}
    };

    serial = getenv("ANDROID_SERIAL");

    while (1) {
        int c = getopt_long(argc, argv, "wub:k:n:r:t:s:S:lc:i:m:ha::", longopts, &longindex);
        if (c < 0) {
            break;
        }
        /* Alphabetical cases */
        switch (c) {
        case 'a':
            wants_set_active = true;
            if (optarg)
                next_active = optarg;
            break;
        case 'b':
            base_addr = strtoul(optarg, 0, 16);
            break;
        case 'c':
            cmdline = optarg;
            break;
        case 'h':
            return show_help();
        case 'i': {
                char *endptr = nullptr;
                unsigned long val;

                val = strtoul(optarg, &endptr, 0);
                if (!endptr || *endptr != '\0' || (val & ~0xffff))
                    die("invalid vendor id '%s'", optarg);
                vendor_id = (unsigned short)val;
                break;
            }
        case 'k':
            kernel_offset = strtoul(optarg, 0, 16);
            break;
        case 'l':
            long_listing = 1;
            break;
        case 'n':
            page_size = (unsigned)strtoul(optarg, nullptr, 0);
            if (!page_size) die("invalid page size");
            break;
        case 'r':
            ramdisk_offset = strtoul(optarg, 0, 16);
            break;
        case 't':
            tags_offset = strtoul(optarg, 0, 16);
            break;
        case 's':
            serial = optarg;
            break;
        case 'S':
            sparse_limit = parse_num(optarg);
            if (sparse_limit < 0) die("invalid sparse limit");
            break;
        case 'u':
            erase_first = false;
            break;
        case 'w':
            wants_wipe = true;
            break;
        case '?':
            return 1;
        case 0:
            if (strcmp("unbuffered", longopts[longindex].name) == 0) {
                setvbuf(stdout, nullptr, _IONBF, 0);
                setvbuf(stderr, nullptr, _IONBF, 0);
            } else if (strcmp("version", longopts[longindex].name) == 0) {
                fprintf(stdout, "fastboot version %s\n", FASTBOOT_VERSION);
                fprintf(stdout, "Installed as %s\n", android::base::GetExecutablePath().c_str());
                return 0;
            } else if (strcmp("slot", longopts[longindex].name) == 0) {
                slot_override = std::string(optarg);
            } else if (strcmp("skip-secondary", longopts[longindex].name) == 0 ) {
                skip_secondary = true;
            } else if (strcmp("skip-reboot", longopts[longindex].name) == 0 ) {
                skip_reboot = true;
            } else if (strcmp("disable-verity", longopts[longindex].name) == 0 ) {
                g_disable_verity = true;
            } else if (strcmp("disable-verification", longopts[longindex].name) == 0 ) {
                g_disable_verification = true;
#if !defined(_WIN32)
            } else if (strcmp("wipe-and-use-fbe", longopts[longindex].name) == 0) {
                wants_wipe = true;
                set_fbe_marker = true;
#endif
            } else if (strcmp("header-version", longopts[longindex].name) == 0) {
                header_version = strtoul(optarg, nullptr, 0);
            } else {
                fprintf(stderr, "Internal error in options processing for %s\n",
                    longopts[longindex].name);
                return 1;
            }
            break;
        default:
            abort();
        }
    }

    argc -= optind;
    argv += optind;

    if (argc == 0 && !wants_wipe && !wants_set_active) syntax_error("no command");

    if (argc > 0 && !strcmp(*argv, "devices")) {
        list_devices();
        return 0;
    }

    if (argc > 0 && !strcmp(*argv, "help")) {
        return show_help();
    }

    Transport* transport = open_device();
    if (transport == nullptr) {
        return 1;
    }

    const double start = now();

    if (!supports_AB(transport) && supports_AB_obsolete(transport)) {
        fprintf(stderr, "Warning: Device A/B support is outdated. Bootloader update required.\n");
    }
    if (slot_override != "") slot_override = verify_slot(transport, slot_override);
    if (next_active != "") next_active = verify_slot(transport, next_active, false);

    if (wants_set_active) {
        if (next_active == "") {
            if (slot_override == "") {
                std::string current_slot;
                if (fb_getvar(transport, "current-slot", &current_slot)) {
                    next_active = verify_slot(transport, current_slot, false);
                } else {
                    wants_set_active = false;
                }
            } else {
                next_active = verify_slot(transport, slot_override, false);
            }
        }
    }

    std::vector<std::string> args(argv, argv + argc);
    while (!args.empty()) {
        std::string command = next_arg(&args);

        if (command == "getvar") {
            std::string variable = next_arg(&args);
            fb_queue_display(variable, variable);
        } else if (command == "erase") {
            std::string partition = next_arg(&args);
            auto erase = [&](const std::string& partition) {
                std::string partition_type;
                if (fb_getvar(transport, std::string("partition-type:") + partition,
                              &partition_type) &&
                    fs_get_generator(partition_type) != nullptr) {
                    fprintf(stderr, "******** Did you mean to fastboot format this %s partition?\n",
                            partition_type.c_str());
                }

                fb_queue_erase(partition);
            };
            do_for_partitions(transport, partition, slot_override, erase, true);
        } else if (android::base::StartsWith(command, "format")) {
            // Parsing for: "format[:[type][:[size]]]"
            // Some valid things:
            //  - select only the size, and leave default fs type:
            //    format::0x4000000 userdata
            //  - default fs type and size:
            //    format userdata
            //    format:: userdata
            std::vector<std::string> pieces = android::base::Split(command, ":");
            std::string type_override;
            if (pieces.size() > 1) type_override = pieces[1].c_str();
            std::string size_override;
            if (pieces.size() > 2) size_override = pieces[2].c_str();

            std::string partition = next_arg(&args);

            auto format = [&](const std::string& partition) {
                if (erase_first && needs_erase(transport, partition.c_str())) {
                    fb_queue_erase(partition);
                }
                fb_perform_format(transport, partition, 0, type_override, size_override, "");
            };
            do_for_partitions(transport, partition.c_str(), slot_override, format, true);
        } else if (command == "signature") {
            std::string filename = next_arg(&args);
            data = load_file(filename.c_str(), &sz);
            if (data == nullptr) die("could not load '%s': %s", filename.c_str(), strerror(errno));
            if (sz != 256) die("signature must be 256 bytes (got %" PRId64 ")", sz);
            fb_queue_download("signature", data, sz);
            fb_queue_command("signature", "installing signature");
        } else if (command == "reboot") {
            wants_reboot = true;

            if (args.size() == 1) {
                std::string what = next_arg(&args);
                if (what == "bootloader") {
                    wants_reboot = false;
                    wants_reboot_bootloader = true;
                } else if (what == "emergency") {
                    wants_reboot = false;
                    wants_reboot_emergency = true;
                } else {
                    syntax_error("unknown reboot target %s", what.c_str());
                }

            }
            if (!args.empty()) syntax_error("junk after reboot command");
        } else if (command == "reboot-bootloader") {
            wants_reboot_bootloader = true;
        } else if (command == "continue") {
            fb_queue_command("continue", "resuming boot");
        } else if (command == "boot") {
            std::string kernel = next_arg(&args);
            std::string ramdisk;
            if (!args.empty()) ramdisk = next_arg(&args);
            std::string second_stage;
            if (!args.empty()) second_stage = next_arg(&args);

            data = load_bootable_image(kernel, ramdisk, second_stage, &sz, cmdline, header_version);
            fb_queue_download("boot.img", data, sz);
            fb_queue_command("boot", "booting");
        } else if (command == "flash") {
            std::string pname = next_arg(&args);

            std::string fname;
            if (!args.empty()) {
                fname = next_arg(&args);
            } else {
                fname = find_item(pname);
            }
            if (fname.empty()) die("cannot determine image filename for '%s'", pname.c_str());

            auto flash = [&](const std::string &partition) {
                if (erase_first && needs_erase(transport, partition.c_str())) {
                    fb_queue_erase(partition);
                }
                do_flash(transport, partition.c_str(), fname.c_str());
            };
            do_for_partitions(transport, pname.c_str(), slot_override, flash, true);
        } else if (command == "flash:raw") {
            std::string partition = next_arg(&args);
            std::string kernel = next_arg(&args);
            std::string ramdisk;
            if (!args.empty()) ramdisk = next_arg(&args);
            std::string second_stage;
            if (!args.empty()) second_stage = next_arg(&args);

            data = load_bootable_image(kernel, ramdisk, second_stage, &sz, cmdline, header_version);
            auto flashraw = [&](const std::string& partition) {
                fb_queue_flash(partition, data, sz);
            };
            do_for_partitions(transport, partition, slot_override, flashraw, true);
        } else if (command == "flashall") {
            if (slot_override == "all") {
                fprintf(stderr, "Warning: slot set to 'all'. Secondary slots will not be flashed.\n");
                do_flashall(transport, slot_override, erase_first, true);
            } else {
                do_flashall(transport, slot_override, erase_first, skip_secondary);
            }
            wants_reboot = true;
        } else if (command == "update") {
            bool slot_all = (slot_override == "all");
            if (slot_all) {
                fprintf(stderr, "Warning: slot set to 'all'. Secondary slots will not be flashed.\n");
            }
            std::string filename = "update.zip";
            if (!args.empty()) {
                filename = next_arg(&args);
            }
            do_update(transport, filename.c_str(), slot_override, erase_first,
                      skip_secondary || slot_all);
            wants_reboot = true;
        } else if (command == "set_active") {
            std::string slot = verify_slot(transport, next_arg(&args), false);

            // Legacy support: verify_slot() removes leading underscores, we need to put them back
            // in for old bootloaders. Legacy bootloaders do not have the slot-count variable but
            // do have slot-suffixes.
            std::string var;
            if (!fb_getvar(transport, "slot-count", &var) &&
                    fb_getvar(transport, "slot-suffixes", &var)) {
                slot = "_" + slot;
            }
            fb_set_active(slot);
        } else if (command == "stage") {
            std::string filename = next_arg(&args);

            struct fastboot_buffer buf;
            if (!load_buf(transport, filename.c_str(), &buf) || buf.type != FB_BUFFER_FD) {
                die("cannot load '%s'", filename.c_str());
            }
            fb_queue_download_fd(filename, buf.fd, buf.sz);
        } else if (command == "get_staged") {
            std::string filename = next_arg(&args);
            fb_queue_upload(filename);
        } else if (command == "oem") {
            do_oem_command("oem", &args);
        } else if (command == "flashing") {
            if (args.empty()) {
                syntax_error("missing 'flashing' command");
            } else if (args.size() == 1 && (args[0] == "unlock" || args[0] == "lock" ||
                                            args[0] == "unlock_critical" ||
                                            args[0] == "lock_critical" ||
                                            args[0] == "get_unlock_ability" ||
                                            args[0] == "get_unlock_bootloader_nonce" ||
                                            args[0] == "lock_bootloader")) {
                do_oem_command("flashing", &args);
            } else if (args.size() == 2 && args[0] == "unlock_bootloader") {
                do_bypass_unlock_command(&args);
            } else {
                syntax_error("unknown 'flashing' command %s", args[0].c_str());
            }
        } else {
            syntax_error("unknown command %s", command.c_str());
        }
    }

    if (wants_wipe) {
        std::vector<std::string> partitions = { "userdata", "cache", "metadata" };
        for (const auto& partition : partitions) {
            std::string partition_type;
            if (!fb_getvar(transport, std::string{"partition-type:"} + partition, &partition_type)) continue;
            if (partition_type.empty()) continue;
            fb_queue_erase(partition);
            if (partition == "userdata" && set_fbe_marker) {
                fprintf(stderr, "setting FBE marker on initial userdata...\n");
                std::string initial_userdata_dir = create_fbemarker_tmpdir();
                fb_perform_format(transport, partition, 1, "", "", initial_userdata_dir);
                delete_fbemarker_tmpdir(initial_userdata_dir);
            } else {
                fb_perform_format(transport, partition, 1, "", "", "");
            }
        }
    }
    if (wants_set_active) {
        fb_set_active(next_active);
    }
    if (wants_reboot && !skip_reboot) {
        fb_queue_reboot();
        fb_queue_wait_for_disconnect();
    } else if (wants_reboot_bootloader) {
        fb_queue_command("reboot-bootloader", "rebooting into bootloader");
        fb_queue_wait_for_disconnect();
    } else if (wants_reboot_emergency) {
        fb_queue_command("reboot-emergency", "rebooting into emergency download (EDL) mode");
        fb_queue_wait_for_disconnect();
    }

    int status = fb_execute_queue(transport) ? EXIT_FAILURE : EXIT_SUCCESS;
    fprintf(stderr, "Finished. Total time: %.3fs\n", (now() - start));
    return status;
}